
LECTURE 37
DATES AND TIMES

MCS 260 Fall 2020
Emily Dumas

REMINDERS

Work on Worksheet 13
Quiz 13 will be posted tomorrow

TIME
Python's time module can tell you the current
timestamp, i.e. the time in second since a certain base
point, the epoch. It can also do some other things.

The epoch is usually 0:00 on January 1, 1970 (GMT).
time.time() — return current timestamp (float).
time.gmtime(0) — return some data about the epoch for this
Python installation.
time.sleep(seconds) — pause execution for seconds
seconds.

(The time module has many other functions.)

DATETIME
Primary module for working with dates and times. The
main class is datetime.datetime representing a
date and time (Gregorian calendar) broken into year,
month, day, hour, minute, second, microsecond.

datetime.datetime.now() — The current
local time (as reported by the OS)
datetime.datetime.utcnow() — The current
time in UTC (equal to GMT)

These return "naive" datetimes; no time zone
information is attached.

There are also datetime.date objects,
representing dates in the Gregorian calendar, and
datetime.time objects, representing a time of day.

These have similar behavior, so we will focus on
datetime.datetime.

Datetime from string:
datetime.datetime.strptime(date_string,format)

— Convert a string to a datetime, assuming it uses the format
described in format (%-codes indicate datetime parts).

Format codes include (see):
%Y = year
%m = month (two digit)
%B = full month name
%d = day (two digit)
%H = hour (two digit, 24 hour)
%I = hour(two digit, 12 hour)
%M = minute (two digit)
%S = second
%p = AM/PM

full list

https://docs.python.org/3/library/time.html#time.strftime

Datetime to string:

If dt is a datetime object:

dt.strftime(format) — converts dt to a
string in the given format.

Datetime to/from timestamp:

If dt is a datetime object:

datetime.datetime.fromtimestamp(ts)

— Convert from a timestamp to a local date and
time
dt.timestamp() — Convert from datetime to a
timestamp

TIMEDELTA
Subtracting two datetime objects gives a
datetime.timedelta object.

datetime.timedelta(days=0, seconds=0,

microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0) — build a new timedelta object
delta.total_seconds() — convert an existing timedelta
object to units of seconds

Internally, timedelta stores days, seconds, and
microseconds. It supports division by other timedelta
objects, and multiplication/division by numbers.

TIME ZONE HANDLING
Everything we've covered so far uses naive datetime
objects, assuming the OS-reported local time zone
when necessary.

Often, this isn't good enough.

But Python's built-in time zone handling is very
limited. It can only represent a fixed offset from GMT.

PYTZ
The module is one of the ways of working with
time zones I recommend.

It is not in the standard library; install it with pip.

In pytz you build timezone objects and then localize
naive datetimes to them (add time zone info), or
normalize datetimes (convert from one zone to
another).

pytz

http://pytz.sourceforge.net/

pytz.timezone(zone_name) — Build new time
zone object representing a named zone like
"US/Eastern"

pytz.all_timezones — List of all recognized
time zone names (>500)

tzobj.localize(naive_dt) — Convert a
naive datetime to the time zone represented by
tzobj

tzobj.normalize(dt)— Convert datetime that
already contains time zone info to one in the time
zone represented by tzobj

RECOMMENDATIONS
For past events, store timestamp or UTC datetime
Convert to user's preferred time zone when
displaying
For future events, it's complicated! (e.g. what if time
zone rules change between now and then?)

Generally need to store the local time
specification and the user's time zone.

DATEUTIL
 is another module not in the standard

library that is often used for handling dates and times
in Python.

(Ask pip to install python-dateutil.)

Like pytz it augments the functionality of datetime.

A nice feature of dateutil is that it has a function
dateutil.parser.parse(s) to make a "best
guess" at the meaning of a date string sof unknown
format.

dateutil

https://dateutil.readthedocs.io/en/stable/

REFERENCES

REVISION HISTORY
2020-11-18 Gregorian calendar note; dateutil; more links
2020-11-17 Initial publication

datetime module official docs
pytz docs
dateutil docs

https://docs.python.org/3/library/datetime.html
http://pytz.sourceforge.net/
https://dateutil.readthedocs.io/en/stable/

