
LECTURE 34
REQUESTING URLS IN PYTHON

MCS 260 Fall 2020
Emily Dumas



REMINDERS

Worksheet 12 available (download data in advance)
Quiz 12 will be posted tomorrow
Read Project 4 description
Project 4 proposals ASAP, due Nov 16



INTERNET LAYER CAKE
Application Retrieve http://example.com/

Transport Transmit GET / to 93.184.216.34

Network Deliver this packet to 93.184.216.34

Link Send this ethernet frame to the router

Physical Change voltages on these wires...



TODAY
We'll discuss making Application-level network
requests in Python.

We focus specifically on retrieving data (documents,
etc.) from a Uniform Resource Locator or URL.

The urllib module in Python supports this. It is
primarily focused on HTTP, HTTPS, and local files.



HTTP REQUEST TYPES
HTTP allows many types of requests. For example:

GET — Ask for the resource. Most common.
POST — Submit data to the resource.
PUT — Submit data that should replace the
resource.

Today we'll only use GET.



HTTP RESPONSE
Response consists of a numeric status code, some
headers (an associative array), then a payload.

E.g. GET a web page, the HTML will be in the payload.

There are ; first digit gives category:

2xx — success
3xx — redirection; more action required (e.g.
moved)
4xx — client error; your request has a problem
5xx — server error; cannot handle this valid request

lots of codes

https://httpstatuses.com/


BASIC URLLIB USAGE
Import urllib.request to get the most convenient
functions for loading URLs.

Call urllib.request.urlopen(url) to open
the URL url using GET. It returns a response object.

Response objects behave like read-only binary files,
and should be closed with .close().

If a 4xx or 5xx response is received, or if contacting the
host fails, a urllib.error.URLError exception is
raised.



RESPONSE OBJECTS
A HTTP response object res has:

res.status — the status code
res.geturl() — returns the final URL (maybe
not the one requested, if redirection used)
res.read() — returns the payload as bytes
res.headers — dict-like object storing the HTTP
headers (not HTML header!)
res.headers.get_content_charset() —
Return payload encoding, if known



USING AN API
urllib.request.urlopen is a great way to fetch
data from APIs.

Example for today: A free dice rolling JSON API* by
Steve Brazier at roll.diceapi.com.

Examples:
http://roll.diceapi.com/json/d6 — roll one six-sided die
http://roll.diceapi.com/json/3d6 — roll three six-sided dice
http://roll.diceapi.com/json/4d12 — roll four twelve-sided dice

* This API could disappear at any moment. It worked on November 10, 2020.



URL PARAMETERS
HTTP GET requests can send an associative array of
parameters. For example, to send the dictionary
{"name":"David","apple":"McIntosh"} to
http://example.com/ the URL would be

The parameter list begins with ? and has & between
name=value pairs. It gets tricky when values or names
have spaces, but urllib.parse.urlencode can
convert a dictionary to a suitable string.

http://example.com/?name=David&apple=McIntosh



CAT FACTS
The domain cat-fact.herokuapp.com hosts an
API* created by CS undergrad student Alex Wohlbruck
for retrieving facts about cats (and other animals). E.g.
https://cat-fact.herokuapp.com/facts/random?amount=2

— two random facts about cats
https://cat-fact.herokuapp.com/facts/random?

animal_type=dog&amount=1 — one random fact about dogs

* This API could disappear at any moment. It worked on November 10, 2020.



REFERENCES
 is quite nice, especially the examples in each section, e.g.

REVISION HISTORY
2020-11-11 Added link to HTTP status code list
2020-11-10 Initial publication

The urllib documentation
Examples of using urllib.request

https://docs.python.org/3.8/library/urllib.html
https://docs.python.org/3.8/library/urllib.request.html#examples



