
LECTURE 3
VARIABLES, ASSIGNMENTS, INPUT

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Complete worksheet 1 this week

Not collected; solution recently posted

Quiz 1 due Monday 6pm Central

Contact staff about install problems

Can request to be excused once per calendar
month by writing to TA (see syllabus)

Upload separate images or single PDF with BIG
screenshot

COMMENTS
In a line of Python code, anything appearing after a
character is ignored by the interpreter.

The ignored text is a comment.

Comments should be added where they will make code
easier to understand (for others, or for you in the
future). They can also be reminders about known
problems or future plans, if these are not recorded
systematically elsewhere.

#

print("Hello world!") # TODO: Choose a new greeting

VARIABLES AND ASSIGNMENTS
Variables allow you to give names to values, and to later
change the value associated with a name. We do so
with assignment statements. The basic syntax is

Example:

name = value

>>> side_length = 5

>>> side_length

5

>>> side_length**2

25

>>> side_length = 6

>>> side_length**2

36

A common mistake for beginners is to put quotation
marks around variable names, or to omit them when a
string is needed.

"foo" = 50 # FAILS: can't assign to string

foo = 50 # Works

foo = thing # FAILS: thing is seen as variable name

foo = "thing" # Works

bar = "foo" # Works, bar is now "foo"

bar = foo # Works, bar is now "thing"

print(Hello world) # FAILS: Hello and world are unknown names

 # and space between var names not allowed

HOW TO THINK ABOUT ASSIGNMENT
The code

asks Python to remember three things:
the value 15
the name (i.e. create a new name if needed)
that currently refers to 15

A diagram is often used to summarize this situation:

x = 15

x

x

⟶x 15

The right hand side of an assignment can be an
expression combining variables, literals, function calls,
and operators. These are evaluated before assignment.

Spaces around are optional.

Variable name prohibitions:

Must not start with a number
Must not contain spaces
Must not be a Python keyword (, ,)

>>> old_semester_tuition = 4763

>>> semester_tuition = old_semester_tuition * (1 + 11.1/100)

>>> semester_tuition

5291.693

=

if while …

The Python 3.8 keywords are:
False await else import pass

None break except in raise

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

Variable name recommendations:
Use only - , - , - , and (underscore)
Use as a word separator

(The are complicated and refer to a number
of other documents and standards. Ultimately, there
are about 120,000 characters allowed.)

A Z a z 0 9 _
_

class_avg = 93.8 # Works

260avg = 93.8 # FAILS: starts with a number

secret code = 12345 # FAILS: spaces prohibited

secret_code = 12345 # Works

SecretCode = 12345 # Works, atypical style

测试成绩 = "great" # Works, not recommended

exact rules

https://www.python.org/dev/peps/pep-3131/

INPUT
The function waits for the user to type a line
of text in the terminal, optionally showing a prompt.

It then returns the text that was read, meaning that the
code behaves as though that instance of has
been replaced by the string the user typed.

input()

input()

>>> s = input("Enter some text: ")

Enter some text: organizing heliotrope

>>> print("You entered:",s)

Your entered: organizing heliotrope

>>> input()

programming exercises

'programming exercises'

>>>

GREETING THE USER
The script will greet you by name.

Usage:

greeting.py
Greet the user by name

MCS 260 Fall 2020 Lecture 3 - Emily Dumas

name = input("Enter your name: ")

print("Nice to meet you,", name)

$ python greeting.py

Enter your name: Emily Dumas

Nice to meet you, Emily Dumas

$

https://dumas.io/teaching/2020/fall/mcs260/samplecode/greeting.py

ARITHMETIC ON INPUT?
We can't do arithmetic on input directly, because the
input is always a string.

Instead we need to convert input to a numeric type,
using , or .

>>> 5 + input("Enter a number: ")

Enter a number: 10

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

int() float() complex()

>>> 5 + int(input("Enter a number: "))

Input: 10

15

The conversion functions , ,
 can convert from strings to numeric types,

and between numeric types, e.g.

Supported conversions:

input type → str int �oat complex

int() ✓ ✓ ✓integer part ✗

�oat() ✓ ✓ ✓ ✗

complex() ✓picky ✓ ✓ ✓

int() float()
complex()

>>> float(42)

42.0

>>> int(12.9)

12

What "picky" means: requires the format
 or .

complex()
x + yj (x + yj)

complex("1+2j") # Works

complex("(1+2j)") # Works

complex("2j+1") # Fails

Warning: Conversion from int to �oat or int to complex
may be destructive; ints are exact, but �oat and
complex may replace input with an approximation.

>>> float(9_007_199_254_740_992)

9007199254740992.0

>>> float(9_007_199_254_740_993)

9007199254740992.0

SUM AND PRODUCT SCRIPT
Here is a script that reads two �oats from
the user and prints their sum and product.

Usage:

sumprod.py

Read two floats and print their sum and product

MCS 260 Fall 2020 Lecture 3 - Emily Dumas

x = float(input("First number: "))

y = float(input("Second number: "))

print("Sum: ",x,"+",y,"=",x+y)

print("Product:",x,"*",y,"=",x*y)

$ python sumprod.py

First number: 1.2

Second number: -3.45

Sum: 1.2 + -3.45 = -2.25

Product: 1.2 * -3.45 = -4.14

https://dumas.io/teaching/2020/fall/mcs260/samplecode/sumprod.py

REFERENCES
In : variables and assignment statements are discussed in , conversion functions (int etc.)
in , and keyboard input is covered in .

ACKNOWLEDGEMENTS
Some of today's lecture was based on teaching materials developed for MCS 260 by .

REVISION HISTORY
2020-08-28 Code formatting correction
2020-08-27 Initial publication

Downey Chapter 2
Section 3.1 Section 5.11

Jan Verschelde

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2003.html
http://greenteapress.com/thinkpython2/html/thinkpython2004.html#sec27
http://greenteapress.com/thinkpython2/html/thinkpython2006.html#sec65
http://homepages.math.uic.edu/~jan/

