
LECTURE 20
MODULES

MCS 260 Fall 2020
Emily Dumas

REMINDERS

Project 2 due today at 6:00pm central
Worksheet 7 available
Quiz 7 due Monday—multiple work sessions OK

WHAT MODULES DO
A complex Python program usually has many lines.

Keeping them in one file is quite limiting. Very long
source files are hard to navigate and understand.

Modules are Python's solution. They let you spread
code across multiple files.

MODULES SO FAR
We discussed the math, random, sys, and os modules.

The pattern is the same: Import the module to make it
available, use the functions as module_name.fn_name(...).

import sys

import os

if os.path.exists("out.dat"):

 print("Error: out.dat already exists; not overwriting.")

 sys.exit()

f = open("out.dat","w")

...

MAKING YOUR OWN MODULE

will look for a module named "foo" in the current
directory and several other places. The list of places is
stored in sys.path.

For example if foo.py exists in the current directory, it

will be imported by this command.

import foo

WHAT IMPORTING MEANS
Functions and variables from the module are made
available with the module name as a prefix, e.g. doit()

becomes foo.doit().

Code in the module outside any function is executed.
Usually, files designed to be used as modules have no
code other than functions and global variables.

EXAMPLE: DICE GAME

WHY TO USE MODULES
Reusability: The same module can be used by many
programs.
Isolation: No conflict between function and var
names in module and those in program.
Implementation hiding: Can substitute any module
which accomplishes the same tasks (e.g. more
efficiently) with no change to main program.

WHAT TO MOVE INTO A MODULE
Functions with related purpose.
Functions that call each other, but nothing from the
rest of the program.
Functions whose purpose is significantly more
general from the program you are developing.

OTHER IMPORT SYNTAX
If you want to, it is possible to import a few functions
from a module into the global namespace, i.e. so the
module name need not be used when calling them.

import random

print("Random digit: ",random.randint(0,9))

OTHER IMPORT SYNTAX
If you want to, it is possible to import a few functions
from a module into the global namespace, i.e. so the
module name need not be used when calling them.

from random import randint

print("Random digit: ",randint(0,9))

Import single name to global namespace:

Import multiple names to global namespace:

Import all names to global namespace:

from module import name

from module import name0, name1, name2

from module import *

ADVICE
import foo is almost always better than

from foo import ...

RULE
You are not allowed to use from foo import ... in

code submitted to MCS 260 assignments.

PROGRAMS THAT WORK AS MODULES
It is convenient to write programs that do something
when run on their own, but which only define functions
when imported. This makes it easier to test functions in
the REPL, for example.

no_main_wrap.py

Importing this will run the main loop

def f(x):

 """polynomial function"""

 return 2.0*x**3 - 3.0*x**2

Main loop

for i in range(11):

 t = i/10

 print("f({}) = {}".format(t,f(t)))

main_wrap.py

Importing this will not run anything

def f(x):

 """polynomial function"""

 return 2.0*x**3 - 3.0*x**2

def main():

 # Main loop

 for i in range(11):

 t = i/10

 print("f({}) = {}".format(t,f(t)))

if __name__=="__main__":

 # We are the main program, not an import

 main()

REFERENCES
In :

REVISION HISTORY
2020-10-08 Initial publication

Downey
Section 14.9 discusses writing modules

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2015.html#sec173

