
LECTURE 2
PYTHON REPL & SCRIPTS; ARITHMETIC

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Complete worksheet 1 this week

e.g. in Tue/Thu discussion

Quiz 1 released, due Mon Aug 31 at 6pm Central

QUICK BLACKBOARD SITE TOUR

TERMINOLOGY
In this course we can treat terminal and shell as
equivalent terms for a text-based interface to your
operating system. PowerShell on Windows or Terminal
on Mac OS X are examples.

(There is a subtle difference between the two terms,
but we won't discuss it.)

The actual difference:

shell: A program that listens for commands and runs
them (e.g. PowerShell, bash)
terminal: A system that can run the shell, give it
keyboard input, show its output on screen (e.g.
PowerShell, gnome-terminal, Terminal.app)

Terminals used to be physical devices. Today, the shell
and terminal may be combined in a single program.

If you are typing and running commands on your
computer, you are using both.

TERMINOLOGY
Python: the language
Python interpreter: the program you run to execute
Python code

There are actually several interpreters for Python,
including CPython (a name for the one we use), PyPy,
Jython, and others.

INTERPRETER MODES
There are two ways to use the Python interpreter

Interactive mode: Each line of code you type is
executed immediately. Used for experimentation.

Script mode: Execute Python code in a file. The
most common way to use Python.

THE PYTHON REPL
Interactive mode is also called the REPL or Read-
Evaluate-Print Loop: The interpreter Reads a line of
code, Evaluates it, and Prints the result, all in an
endless Loop.

This mode opens if you type python in the shell and
press Enter.

$ python

Python 3.8.2 (default, Jul 16 2020, 14:00:26)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more info

>>> print("MCS 260!")

MCS 260!

>>>

PLATFORM-DEPENDENCE NOTE
The name of the python interpreter may be "python"
or "python3", or possibly something else under
unusual circumstances.

The recommended ways of installing python in the
startup instructions give the following names:

Windows: python
Mac OS X: python3
Linux: python3 will work, python may open python 2
or 3

REPL pros:

Quick iteration, great while learning
Help system (covered later)

REPL cons:

Start from scratch each time
Results depend on history
Inconvenient to edit larger blocks of code
No syntax highlighting

Alternative interactive Python interfaces fix many
deficiencies (e.g. iPython/Jupyter, IDLE, ...).

PYTHON SCRIPTS
Create a text file containing Python code, traditionally
with extension ".py" (e.g. with VS code).

Add the name of this script file just after the
interpreter name when running Python in the shell.

Content of hello.py:

$ python hello.py

Hello world!

$

print("Hello world!")

ARITHMETIC IN PYTHON
Python has arithmetic operators, including:

 addition and subtraction
 multiplication
 division and integer division

 exponentiation (means .)
Parentheses for grouping

+ -
*

/ //

** a**b a
b

>>> 1+1

2

>>> 2*130

260

>>> 1 / (1 + 1 + 1)

0.3333333333333333

>>> 2**5

32

>>> 7/2

3.5

>>> 7//2

3

>>>

ORDER OF OPERATIONS
Python mostly follows the mathematical convention
on order of operations.

PEMDAS is a convenient mnemonic. It means the
following are listed from highest precedence (first
evaluated) to lowest (last):

P : parentheses
E : exponentiation (e.g.)
MD : multiplication, division (equal precedence)
AS : addition, subtraction (equal precedence)

2**3

PEMDAS example:

This was evaluated as

>>> 1 + 1/2**3

1.125

1 + (1/()) = 1 + (1/8) = 1.12523

INTEGER LITERALS
Python prints numbers in decimal, but in a script or
the REPL it can read them in binary, hex, or octal.

These ways of expressing an integer that are
recognized by Python are called integer literals.

>>> 0b1001

9

>>> 0xfa

250

>>> 0o775

509

Arithmetic can be done directly on literals regardless
of base:

>>> 0xfa + 2

252

>>> 0o777 + 0x12

529

>>> 5**0b10

25

FLOATING-POINT LITERALS
Python also supports an approximation of the real
number system. The approximation uses floating-
point numbers or floats.

Keep in mind that floats are an imperfect
approximation of the reals:

>>> 1.15

1.15

>>> 2.158 - 0.325

1.833

>>> 0.1+0.2

0.30000000000000004

SCIENTIFIC NOTATION
Floating-point literals support scientific notation, with
the letter or taking the place of " "E e ×10...

>>> 1e-3

0.001

>>> 500e-2

5.0

>>> 0.115e1

1.15

>>> 1e-9

1e-09

>>> 1e-3

COMPLEX LITERALS
Complex numbers are also supported. The Python
notation for the imaginary unit is , but it cannot stand
on its own; it must be preceded by a floating-point
literal:

j

>>> j

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'j' is not defined

>>> 1j

1j

>>> 2j+1

(1+2j)

>>> 1j * 1j

(-1+0j)

>>> 0.1 - 0.2j + 0.5 - 0.9j

(0.6-1.1j)

VALUES AND TYPES
Every value we work with in Python has a type. You
can determine the type using the built-in:

str means string, a sequence of characters

int means integer

float means floating-point number

type()

>>> type("Hello world!")

<class 'str'>

>>> type(77)

<class 'int'>

>>> type(0.1)

<class 'float'>

complex means floating-point complex number

Note how 77 is different from 77.0

Note how (in quotes) is different from :

>>> type(1j)

<class 'complex'>

>>> type(77.0)

<class 'float'>

"0.1" 0.1

>>> type("0.1")

<class 'str'>

Notice that the result of some arithmetic operations
can be of a different type than the operands.

>>> 5/2

2.5

>>> type(5)

<class 'int'>

>>> type(2)

<class 'int'>

>>> type(5/2)

<class 'float'>

PRINTING
The function is used to print values to the
terminal.

The basic syntax is
.

print()

print(val1, val2, val3, ...)

>>> print("The decimal value of binary 1001 is",0b1001)

The decimal value of binary 1001 is 9

>>> print("The sum of",99,"and",0b10,"is",99+0b10)

The sum of 99 and 2 is 101

>>> print(1,1.0,1+0j)

1 1.0 (1+0j)

>>>

When multiple values are given, separates
them with a space by default.

After it is finished printing, the cursor is moved to the
next line by printing a special "newline" character.

Both behaviors can be changed, e.g. use no separator
at all:

Use a longer string as a separator:

print()

>>> print(1,2,3,sep="")

123

>>>

>>> print(1,2,3,4,sep="potato")

1potato2potato3potato4

It is also possible to disable the newline:

You can actually specify an arbitrary string to be
printed at the end of the line, but usually the only
relevant options are newline or nothing at all.

There's a lot more to say about printing; we'll come
back to this in a later lecture (currently scheduled for
Lec 13 / Wed 23 Sep).

>>> print(1,2,3,end="")

1 2 3>>>

REFERENCES
Most of this material is discussed in .

ACKNOWLEDGEMENTS
Some of today's lecture was based on teaching materials developed for MCS 260 by .

REVISION HISTORY
2020-08-25 Initial publication

Sections 1.4-1.5 of Downey

Jan Verschelde

http://greenteapress.com/thinkpython2/html/thinkpython2002.html#sec9
http://homepages.math.uic.edu/~jan/

