
LECTURE 18
MORE ON BOOLEANS AND

ITERABLES
MCS 260 Fall 2020

Emily Dumas

REMINDERS

Quiz 6 due today
Project 2 due Friday at 6:00pm central

NONE
None is the only value of type NoneType. It
represents the absence of a value, in cases where
some value is needed.

E.g. None is the return value of a function that doesn't
have a return statement.

>>> def f(x):

... "Do nothing"

...

>>> f(1) == None

True

BOOL()
The built-in function bool(x) converts a value x to a
boolean, i.e. to either True or False.

How? A few values convert to False (are "falsy"):

False
None
Zero in any numeric type (0, 0.0, 0j)
Empty containers, i.e. (), [], "", {}, range(0)

Anything else converts to True, i.e. is "truthy" (unless
you use an advanced technique to override this).

AUTOMATIC BOOL CONVERSION
Python implicitly applies bool() to any value
appearing where a boolean is expected, i.e. a�er if,
elif, or while, or as operand of not, or, and.

>>> x = 5

>>> while x: # not recommended; `while x!=0` is better.

... print(x,end=" ")

... x = x - 1

...

5 4 3 2 1 >>>

if not username:

 # Handle empty username

 print("The username must not be empty.")

 continue

SEQUENCES AND ITERABLES
Reminder: Sequence is an ordered collection that can
be accessed by integer index, e.g. tuple, list, string.

SEQUENCES AND ITERABLES
Reminder: Iterable is a collection that can return items
one by one upon request, e.g. range(), dict, dict_keys,
...

ZIP
You have a list

and another list

How would you make the list of corresponding pairs

?

xcoords = [1,2,7,0,2]

ycoords = [5,5,-1,0,1]

[(1,5), (2,5), (7,-1), (0,0), (2,1)]

Could use indexing and a for loop or comprehension,
e.g.

But remember range(len()) usually means there
is a better way?

>>> [(xcoords[i], ycoords[i]) for i in range(len(xcoords))]

[(1, 5), (2, 5), (7, -1), (0, 0), (2, 1)]

zip(A,B,C,...) takes a bunch of iterables and
returns tuples of values until one iterable is exhausted.

Note zip() returns an iterable that we can convert to
a list if needed.

>>> zip(xcoords,ycoords)

<zip object at 0x7f51a3e36dc0>

>>> list(zip(xcoords,ycoords))

[(1, 5), (2, 5), (7, -1), (0, 0), (2, 1)]

zip() is most o�en used in loops
cols = ["name", "quiz 1", "quiz 2"]

vals = ["Anne Example", "82.5", "95.0"]

for column,value in zip(cols,vals):

 print("Found value {} in column {}".format(value,column))

Exercise: Given the list

How would you iterate over the adjacent pairs without
using indices?

[4, 8, 15, 16, 23 42]

>>> for a,b in adjacent_pairs([4, 8, 15, 16, 23, 42]):

... print("Pair: {} and {}".format(a,b))

...

Pair: 4 and 8

Pair: 8 and 15

Pair: 15 and 16

Pair: 16 and 23

Pair: 23 and 42

def adjacent_pairs(L):

 return zip(L,L[1:])

ANY & ALL
The functions any(L) and all(L) convert an
iterable L into a single boolean.

any(L) returns True if at least one item from L is
truthy. It returns as soon as it finds a truthy value. It is
like a chain of or.

all(L) returns True if all items from L are truthy. It
returns as soon as it finds a falsy value. It is like a chain
of and.

Example: Check whether all characters in a string
satisfy a condition.

left_keys = "qwertasdfgzxcvb"

def is_left_hand(word):

 "Can `word` be typed with only left hand on en-us keyboard

 return all([c in left_keys for c in word])

Example: Check whether a list of numbers contains at
least one positive number.

def contains_a_positive(L):

 "Does `L` contain an element greater than zero?"

 return any([x>0 for x in L])

REFERENCES
In :

REVISION HISTORY
2020-10-04 Correction about early return from all()
2020-10-03 Initial publication

Downey
Section 19.4 covers any and all
Section 12.5 covers zip

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2020.html#sec226
http://greenteapress.com/thinkpython2/html/thinkpython2013.html#sec145

