
LECTURE 16
HIGHER-ORDER FUNCTIONS &

EXCEPTIONS
MCS 260 Fall 2020

Emily Dumas

REMINDERS

Work on Project 2, due Oct 9
Project 2 autograder now open!

HIGHER-ORDER FUNCTIONS
Last time: Functions can be values

Functions can take other functions as arguments

A function that accepts function arguments is
sometimes called a higher-order function.

def dotwice(f):

 """Call the function f twice (with no arguments)"""

 f()

 f()

Better example: Given function f, value x, and integer
n, compute the values

where the last element is f applied n times.

[x, f(x), f(f(x)), f(f(f(x))), ...]

def nestlist(f,x,n):

 """Return list of iterates of f on x,

 from 0 times to n times

 """

 L = [x]

 for i in range(n):

 L.append(f(L[-1]))

 return L

>>> nestlist(lambda x:2*x,5,3)

[5, 10, 20, 40]

ERROR HANDLING
Programs sometimes encounter unexpected events:

Data has unexpected format
File operation impossible (missing, permissions, ...)
Variable name does not exist
...many more

Making a program robust means ensuring it can serve
its function even after certain errors occur.

ERROR HANDLING APPROACHES
Three main approaches:

Do nothing. Behavior when an error occurs depends
on OS and language. Not good!

Explicitly check for error at every step (often using
return values), report to caller if in a function.

Exceptions. (Explained soon.)

EXPLICIT CHECKS AT EACH STEP
Build functions that return information, and an
indication of whether an error occurred.

When functions call other functions, this gets
complicated. Each one needs to detect and report
errors to its caller.

retval, errcode = load_data()

if errcode != 0:

 # Some error occurred

 print("Unable to load data due to error: ",errmsg[errcode]

EXCEPTIONS
An exception signals that an unexpected event has
occurred, and control should jump to code that is
meant to handle it. We say the error "raises" an
exception, and other code "catches" it.

In Python, an exception behaves a bit like break. Just
as break searches for an enclosing loop, after an
exception Python searches for an enclosing try block
that will catch it.

TRY...EXCEPT
try:

 # code that does something that may raise an

 # exception we want to handle

except:

 # code to start executing if an error occurs

line that will execute after the try-except

Handle input string that is not a number.

Exceptions are Python's preferred error handling
mechanism.

while True:

 s = input()

 try:

 n = float(s)

 break

 except:

 print("Please enter a number.")

print("Got a number:",n)

UNCAUGHT EXCEPTIONS
If no try...except block catches an exception, the
program ends.

An error message is printed that also describes what
type of exception occurred.

>>> int(input())

walrus

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'walrus'

SOME BUILT-IN EXCEPTIONS
ValueError - Function got the right type, but an inappropriate value
e.g. int("apple")
IndexError - Valid index requested, but that item does not exist
e.g. ["a","b"][15]
KeyError - A requested key was not found in a dictionary
e.g. {"a": 260, "b":330}["autumn"]
TypeError - Invalid argument type, e.g. non-integer list index:
e.g. ["a","b"]["foo"]
OSError - The OS reported an error in a requested operation; includes many
file-related errors (e.g. file not found, filename is a directory, permissions do
not allow opening the file, ...)
NameError - Reference to unknown variable.

CATCHING SPECIFIC EXCEPTIONS
try:

 # code that does something that may raise an

 # exception we want to handle

except ValueError:

 # code to handle a ValueError

except OSError:

 # code to handle a OSError

except:

 # code to handle any other exception

line that will execute after the try-except

CATCHING EXCEPTION OBJECTS

Printing an exception object gives some information
about the error. Some exception types carry additional
data, like OSError.filename to get the filename of
the file the error involves.

try:

 open("foo.txt","r")

except OSError as e:

 print("Unable to open foo.txt; the error was:\n",e)

RAISING EXCEPTIONS YOURSELF
Your functions can raise exceptions using the raise
keyword, followed by an exception type.

raise ValueError("U+1F4A9 not allowed in quiz answer")

raise TypeError("This function cannot use a complex value")

raise NotImplementedError("Vending snacks doesn't work yet")

raise Exception("Aborted calculation due to laser shark attack

REFERENCES
In :

Various built-in exceptions are discussed throughout.
 and discuss catching exceptions.

 from Python 3 documentation.

REVISION HISTORY
2020-09-29 Initial publication

Downey

Section 14.5 Section 15.7
List of built-in exceptions

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2015.html#sec169
http://greenteapress.com/thinkpython2/html/thinkpython2016.html#sec184
https://docs.python.org/3/library/exceptions.html

