
LECTURE 14
LISTS AS STACKS AND QUEUES

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Work on:

Worksheet 5

Quiz 5

Now posted

Project 2 description (read it!)

More on this example: , lettervalues.py vals.txt
"""Compute the "value" of a word, if each letter is

worth a different number of points specified in a

file.

MCS 260 Fall 2020 Lecture 13 - Emily Dumas

"""

import sys

if len(sys.argv) != 3:

 print("Usage:",sys.argv[0],"valuefile word")

 print("Read values for each alphabet letter from `valuefile`")

 print("in the format letter,value, e.g.:")

 print("a,1\nb,3\nc,3\nd,2")

 print("Then, compute the value of `word` and print it.")

 sys.exit() # exits the program immediately

fin = open(sys.argv[1],"r")

vals = dict()

for line in fin:

 ltr,valstr = line.split(",")

 vals[ltr] = int(valstr)

https://dumas.io/teaching/2020/fall/mcs260/samplecode/lettervalues.py
https://dumas.io/teaching/2020/fall/mcs260/samplecode/vals.txt

TWO DATA STRUCTURES
Stack - LIFO (last in, first out) storage of items. Like a
physical stack. Operations:

push - add element to the "top" of the stack
pop - remove and return element on the "top" of
the stack

Queue - FIFO (first in, first out) storage of items. Like
a line or waiting list. Operations:

Enqueue - add an element to the back of the line
Dequeue - remove and return the element at the
front of the line

STACK
Common applications:

Undo a sequence of actions.
Parsing: Which block are we in?
Function calls: Which function are we in?

Can use a Python list with:

push becomes list.append
pop becomes list.pop

This implementation is efficient.

Stack example: winter.py
"""Simulate getting ready to go out in winter"""

print("Enter items worn, in order put on:")

L = []

while True:

 s = input().strip()

 if s == "":

 break

 L.append(s)

print("Ok. Press Enter when ready to remove winter gear.")

input()

while len(L)>0:

 s = L.pop()

 print("Remove",s,"and press Enter when ready.")

 input()

https://dumas.io/teaching/2020/fall/mcs260/samplecode/winter.py

QUEUE
Common applications:

Work to be done / data to be processed.
Buffer for communication method.

Can use a Python list with:

enqueue becomes list.append(item)
dequeue becomes list.pop(0)

Using a list as a queue is NOT efficient. Time to
remove an item grows with the size of the queue.

More efficient: deque from the collections module

Output:

import collections

Q = collections.deque()

Q.append("first in") # enqueue

Q.append(260)

Q.append("last in")

while len(Q)>0:

 x = Q.popleft() # dequeue

 print(x)

first in

260

last in

Notice deque implements queue operations:

enqueue becomes deque.append(item)
dequeue becomes deque.popleft()

Efficiency means time to add or remove an item is
independent of how many items are present (like
stacks).

ANOTHER STACK EXAMPLE
Checking parenthesis matching (example of parsing)

This expression is ok:

((2+3) - (4*5))

These are not:

((5*7))) - ((2)

((2+3)-5))

Goal: Decide if ok, give useful error if not.

parens.py
"""Check arithmetic expression for balanced parentheses"""

print("Enter an arithmetic expression in parentheses:")

s = input().strip()

paren_stack = []

for i,c in enumerate(s):

 if c == "(":

 paren_stack.append(i)

 elif c == ")":

 if len(paren_stack) == 0:

 # Too many right parentheses

 print("ERROR: Extra right parenthesis")

 print(s)

 print(i*" " + "^")

 break

 paren_stack.pop()

if len(paren_stack) > 0:

 # Unclosed left parenthesis

 i = paren_stack.pop() # Where was the left paren that's open?

print("ERROR: Unclosed parenthesis")

https://dumas.io/teaching/2020/fall/mcs260/samplecode/parens.py

REFERENCES
Optional text discuss stacks and queues in Section 8.1

 does not discusses stacks and queues in general

discusses stacks and queues in Chapter 6.

REVISION HISTORY
2020-09-24 Initial publication

Brookshear & Brylow
Downey
Data Structures and Algorithms in Python by Goodrich, Tamassia, and Goldwasser

https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html
http://greenteapress.com/thinkpython2/html/index.html
https://books.google.com/books/about/Data_Structures_and_Algorithms_in_Python.html?id=IFmBtgAACAAJ

