
LECTURE 13
FILES

STRING FORMATTING
MCS 260 Fall 2020

Emily Dumas

REMINDERS
Work on:

Worksheet 5

Quiz 5

FILES
A �le is a named, ordered collection of data, usually in
persistent storage (disks, �ash, etc.).

Files are stored in a hierarchy of directories.

Basic operations: Read data from a �le with a given
name; Write data to �le with a given name.

Typical request: Write the string 'print("hello

world")\n' to c:\Users\ddumas\hello.py.

DISKS
disks = shorthand for persistent storage devices.

OS typically sees each one as a list of 4KiB blocks.

Basic operations: Read a block by index, write to a block
by index.

e.g. 466GiB disk is 122 million blocks. Typical request:
Write these 4096 bytes to block 21430229.

∼

FILESYSTEMS
A �lesystem is the OS component that translates �le-
related requests into operations that disks support.

Filesystems decide where to put �le data on disk, how
to keep track of �le and directory names, and tracking
which disk parts are used/free.

FILES IN PYTHON
We will only cover text �les, where you read and write
strings. There are also binary �les, where you read and
write bytes.

The open(filename,[mode]) function opens a �le

and returns an object with methods to read and write.
"""Write a string to a file"""

fout = open("out.txt","w") # w means write allowed

fout.write("Hello world")

fout.close() # Done with this file (OS does cleanup)

fin = open("out.txt","r") # r means read only (default)

s = fin.read() # Get entire file contents

fin.close()

print("Contents of file:",s)

MODES
"r" - Read. The default. Allows reading.
"w" - Write. Dangerous: deletes the �le if it exists.
Allows reading and writing.
"a" - Append. Open for append. Allows reading and
writing, but starts at the end of the �le if it exists.

READING LINES
Often you want to process one line at a time. File
objects are iterable, giving the lines. E.g.

Sample output:

nl.py
"""Number the lines of a file specified on command line"""

import sys

fin = open(sys.argv[1],"r")

n = 0

for line in fin:

 n = n+1

 print(n,line,end="") # line usually has \n at the end

fin.close()

$ python nl.py nl.py

1 """Number the lines of a file specified on command line"""

2 import sys

...

https://dumas.io/teaching/2020/fall/mcs260/samplecode/nl.py

Important: file.write() is not like print(). It

doesn't add a newline, and it doesn't accept multiple
arguments to print.

Must prepare a single string to write. The usual way is
to use str.format():

print(1,2,"three","four") # ok

fout.write(1,2,"three","four") # FAILS

fout.write("{} {} three four\n".format(1,2)) # ok

Writes "1 2 three four\n"

STRING FORMATTING
str.format() has many features to create a string

based on a template and some values. In the string,
placeholders ({} or {...}) are replaced by arguments

of str.format().

>>> "{1} taught {0}".format("MCS 260","Dumas") # give indices

'Dumas taught MCS 260'

>>> for x in range(98,101):

... print("{:4}".format(x)) # specify width

...

 98

 99

 100

>>> "{:04}".format(42) # pad to width with zeros

'0042'

The general placeholder syntax is {w:ot} where w

speci�es which argument, o is a set of options, and t is
the type.

>>> "{:8.2f}".format(42) # f = float, width 8, 2 digits after .

' 42.00'

>>> "{:8x}".format(42) # x = hex int, width 8

' 2a'

>>> "{:8d}".format(42) # d = decimal int, width 8

' 42'

>>> "{:.2f}".format(13+2j) # f allows complex; no total width

'13.00+2.00j'

str.format() has a lot of features we didn't discuss

today.

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

Another �le example: , lettervalues.py vals.txt
"""Compute the "value" of a word, if each letter is

worth a different number of points specified in a

file.

MCS 260 Fall 2020 Lecture 13 - Emily Dumas

"""

import sys

if len(sys.argv) != 3:

 print("Usage:",sys.argv[0],"valuefile word")

 print("Read values for each alphabet letter from `valuefile`")

 print("in the format letter,value, e.g.:")

 print("a,1\nb,3\nc,3\nd,2")

 print("Then, compute the value of `word` and print it.")

 sys.exit() # exits the program immediately

fin = open(sys.argv[1],"r")

vals = dict()

for line in fin:

 ltr,valstr = line.split(",")

 vals[ltr] = int(valstr)

fin.close()

https://dumas.io/teaching/2020/fall/mcs260/samplecode/lettervalues.py
https://dumas.io/teaching/2020/fall/mcs260/samplecode/vals.txt

REFERENCES
In :

Section 14.3 discusses a different, older way of formatting strings.
This by Lisa Tagliaferri at DigitalOcean is a
good reference for the topics in string formatting we covered today.

REVISION HISTORY
2020-09-22 Initial publication

Downey
Chapter 14 discusses �les, especially Sections 14.1, 14.2, and 14.4.

Introduction to String Formatters in Python 3

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2015.html
https://www.digitalocean.com/community/tutorials/how-to-use-string-formatters-in-python-3

