
LECTURE 13
FILES

STRING FORMATTING
MCS 260 Fall 2020

Emily Dumas

REMINDERS
Work on:

Worksheet 5

Quiz 5

FILES
A file is a named, ordered collection of data, usually in
persistent storage (disks, flash, etc.).

Files are stored in a hierarchy of directories.

Basic operations: Read data from a file with a given
name; Write data to file with a given name.

Typical request: Write the string 'print("hello
world")\n' to c:\Users\ddumas\hello.py.

DISKS
disks = shorthand for persistent storage devices.

OS typically sees each one as a list of 4KiB blocks.

Basic operations: Read a block by index, write to a
block by index.

e.g. 466GiB disk is 122 million blocks. Typical
request: Write these 4096 bytes to block 21430229.

∼

FILESYSTEMS
A filesystem is the OS component that translates file-
related requests into operations that disks support.

Filesystems decide where to put file data on disk, how
to keep track of file and directory names, and tracking
which disk parts are used/free.

FILES IN PYTHON
We will only cover text files, where you read and write
strings. There are also binary files, where you read
and write bytes.

The open(filename,[mode]) function opens a
file and returns an object with methods to read and
write.

"""Write a string to a file"""

fout = open("out.txt","w") # w means write allowed

fout.write("Hello world")

fout.close() # Done with this file (OS does cleanup)

fin = open("out.txt","r") # r means read only (default)

s = fin.read() # Get entire file contents

MODES
"r" - Read. The default. Allows reading.
"w" - Write. Dangerous: deletes the file if it exists.
Allows reading and writing.
"a" - Append. Open for append. Allows reading and
writing, but starts at the end of the file if it exists.

READING LINES
Often you want to process one line at a time. File
objects are iterable, giving the lines. E.g.

Sample output:

nl.py
"""Number the lines of a file specified on command line"""

import sys

fin = open(sys.argv[1],"r")

n = 0

for line in fin:

 n = n+1

 print(n,line,end="") # line usually has \n at the end

fin.close()

$ python nl.py nl.py

1 """Number the lines of a file specified on command line"""

2 import sys

...

https://dumas.io/teaching/2020/fall/mcs260/samplecode/nl.py

Important: file.write() is not like print(). It
doesn't add a newline, and it doesn't accept multiple
arguments to print.

Must prepare a single string to write. The usual way is
to use str.format():

print(1,2,"three","four") # ok

fout.write(1,2,"three","four") # FAILS

fout.write("{} {} three four\n".format(1,2)) # ok

Writes "1 2 three four\n"

STRING FORMATTING
str.format() has many features to create a string
based on a template and some values. In the string,
placeholders ({} or {...}) are replaced by
arguments of str.format().

>>> "{1} taught {0}".format("MCS 260","Dumas") # give indices

'Dumas taught MCS 260'

>>> for x in range(98,101):

... print("{:4}".format(x)) # specify width

...

 98

 99

 100

>>> "{:04}".format(42) # pad to width with zeros

'0042'

The general placeholder syntax is {w:ot} where w
specifies which argument, o is a set of options, and t is
the type.

>>> "{:8.2f}".format(42) # f = float, width 8, 2 digits after

' 42.00'

>>> "{:8x}".format(42) # x = hex int, width 8

' 2a'

>>> "{:8d}".format(42) # d = decimal int, width 8

' 42'

>>> "{:.2f}".format(13+2j) # f allows complex; no total width

'13.00+2.00j'

str.format() has a lot of features we didn't
discuss today.

https://docs.python.org/3/library/string.html#formatspec
https://docs.python.org/3/library/string.html#formatspec

Another file example: , lettervalues.py vals.txt
"""Compute the "value" of a word, if each letter is

worth a different number of points specified in a

file.

MCS 260 Fall 2020 Lecture 13 - Emily Dumas

"""

import sys

if len(sys.argv) != 3:

 print("Usage:",sys.argv[0],"valuefile word")

 print("Read values for each alphabet letter from `valuefile`")

 print("in the format letter,value, e.g.:")

 print("a,1\nb,3\nc,3\nd,2")

 print("Then, compute the value of `word` and print it.")

 sys.exit() # exits the program immediately

fin = open(sys.argv[1],"r")

vals = dict()

for line in fin:

 ltr,valstr = line.split(",")

 vals[ltr] = int(valstr)

https://dumas.io/teaching/2020/fall/mcs260/samplecode/lettervalues.py
https://dumas.io/teaching/2020/fall/mcs260/samplecode/vals.txt

REFERENCES
In :

Section 14.3 discusses a different, older way of formatting strings.
This by Lisa Tagliaferri at DigitalOcean is a
good reference for the topics in string formatting we covered today.

REVISION HISTORY
2020-09-22 Initial publication

Downey
Chapter 14 discusses files, especially Sections 14.1, 14.2, and 14.4.

Introduction to String Formatters in Python 3

http://greenteapress.com/thinkpython2/html/index.html
http://greenteapress.com/thinkpython2/html/thinkpython2015.html
https://www.digitalocean.com/community/tutorials/how-to-use-string-formatters-in-python-3

