
LECTURE 12
COMMAND LINE ARGUMENTS

OPERATING SYSTEMS
MCS 260 Fall 2020

Emily Dumas

REMINDERS
Work on:

Worksheet 5

Quiz 5 to be posted soon

Project 2 description coming soon

COMMAND LINE ARGUMENTS
Taking a break from Python, let's talk about the shell.

When you run a command in the shell, it may accept
some strings as arguments, e.g.

Here is the command name, and the string
 is the �rst (and only) command line

argument.

Command line arguments are separated by spaces.

PS C:\Users\ddumas> cd Desktop

PS C:\Users\ddumas\Desktop>

cd

Desktop

Python programs can access the command line
arguments. For example, if a script is run with the
command

Then we can access each string after "python". This is
useful so that a program can accept input from the
command line, rather than reading it from the
keyboard.

python example.py now is the winter of our discontent

To access command line args, we �rst import the
module:

Now we have access to the list . At index it
contains the name of our script (as given to the
interpreter). At index is the �rst argument after the
script name, etc..

In the previous example, would have value:

sys

import sys

sys.argv 0

1

sys.argv

['example.py', 'now', 'is', 'the',

 'winter', 'of', 'our', 'discontent']

Simple example: repeat0.py, repeats a string a given
number of times

"""Repeat a string a given number of times.

The first argument is the number of times.

The second gives the string to repeat.

"""

import sys

n = int(sys.argv[1])

s = sys.argv[2]

for i in range(n):

 print(s)

PS C:\Users\ddumas\Desktop> python repeat0.py 5 hello

hello

hello

hello

hello

hello

PS C:\Users\ddumas\Desktop> python repeat0.py onlyone

Traceback (most recent call last):

 File "repeat0.py", line 7, in <module>

 n = int(sys.argv[1])

ValueError: invalid literal for int() with base 10: 'onlyone'

PS C:\Users\ddumas\Desktop> python repeat0.py

Traceback (most recent call last):

 File "repeat0.py", line 7, in <module>

 n = int(sys.argv[1])

IndexError: list index out of range

PS C:\Users\ddumas\Desktop>

The better version checks for too few
arguments and handles it gracefully.

repeat.py

"""Repeat a string a given number of times.

The first argument is the number of times.

The second gives the string to repeat.

"""

import sys

if len(sys.argv) < 3:

 print("Usage:",sys.argv[0],"N s")

 print("Prints N copies of string s, one per line.")

else:

 n = int(sys.argv[1])

 s = sys.argv[2]

 for i in range(n):

 print(s)

https://dumas.io/teaching/2020/fall/mcs260/samplecode/repeat.py

PS C:\Users\ddumas\Desktop> python repeat.py

Usage: repeat.py N s

Prints N copies of string s, one per line.

PS C:\Users\ddumas\Desktop> python repeat.py 3

Usage: repeat.py N s

Prints N copies of string s, one per line.

PS C:\Users\ddumas\Desktop> python repeat.py 3 goodbye

goodbye

goodbye

goodbye

The handoff of arguments from the shell to the Python
script is one of the services of the operating system or
OS.

Windows, Linux, Mac OS, Android, iOS are all operating
systems.

An OS manages the lowest-level details of a computer's
operation.

A key feature of operating systems is that they provide
abstraction.

For example: A wireless mouse, a wired mouse, and a
touchpad operate very differently. The OS handles
these differences so that a program can ask for the
current position of the pointer, without concern for the
speci�c hardware.

GLOSSARY
CPU - Central Processing Unit or processor. The main
component of a computer that executes instructions
in a computer program.
Hardware - The physical parts (electronic devices)
that make up a computer.
Software - Collective term for computer programs.

GLOSSARY
RAM - Random-Access Memory, or just memory. The
place where currently-running programs and the
data they use are stored. Variables are stored here.
Contents of RAM are lost when the computer is
powered off or restarted.
Persistent storage - Hardware devices such as disks,
USB �ash drives, etc., that can store data that is not
lost on restart or power-off.

SOME OS SERVICES
Device management: communicate with attached
devices (mouse, keyboard, disks, video controller,
sound hardware) and provide a standardized
interface for them.
Process management: Control starting, stopping,
running of programs as processes. Manage which
processes have access to the CPU at a given time.

SOME OS SERVICES
Memory management: Processes can only access
parts of RAM that the OS allows them to. They can
request access to more (or less) RAM.
File management: Data stored on persistent storage
devices is usually arranged into named �les, which
are in turn arranged into a hierarchy of directories.
Storage devices know nothing about these concepts,
and store only bytes. The OS provides the �le/dir
abstractions.

WHEN YOU CLICK "SAVE"
At a low level (hardware), assuming a wireless mouse:

Your �nger activates a switch in the mouse.
A processor in the mouse is running a program that
frequently checks the switch position. One such
check notices it is closed, and calls a function to send
noti�cation of the change.
A radio in the mouse begins sending bits of data using
a 2.4Ghz carrier.

A bluetooth adapter in your computer that is
constantly monitoring that radio frequency receives
the data and asks for attention from the CPU.
The CPU switches to a driver in the OS that
processes bluetooth data packets. The driver
analyzes the data and adds a new "mouse event" to a
list in RAM.
Eventually, another part of the OS that handles
routing of events gets the CPU. It begins searching
for a process that should receive noti�cation of the
new mouse event.

The editor window is identi�ed as the recipient.
The editor asks the OS if there are any new events to
handle, and gets the mouse event as an answer.
 ...hundreds of steps...
The disk completes the request to write the bytes
representing "...print('Hello world')\n" to the
speci�ed address.

WHEN YOU CLICK "SAVE"
At the level of OS-provided functions:

A loop in the editor is constantly asking the OS if
there are new events to handle. Eventually, it
receives one—a mouse click.
The editor determines the click is on "Save".
A function within the editor to save the current �le is
called. It determines the �lename, and asks the OS to
open the �le with permission to write.
The OS gives the editor a number to identify this
open �le.

The editor takes contents of the �le the user is
editing (from a string variable), encodes the code
points as bytes, and asks the OS to write these data
to the open �le.
The OS reports success, and the editor asks the OS to
close the �le.
The editor updates its display to show that the �le
has no unsaved changes.

NEXT TIME
Reading and writing �les in Python
String formatting

REFERENCES
Command line arguments are not covered in the primary text.
The documentation of brie�y summarizes today's material on command line
arguments.
Today's discussion of operating systems summarizes some of the material from Chapter 3
in .

REVISION HISTORY
2020-09-20 Initial publication

sys.argv

Brookshear & Brylow

https://docs.python.org/3/library/sys.html#sys.argv
https://www.pearson.com/us/higher-education/program/Brookshear-Computer-Science-An-Overview-13th-Edition/PGM1949505.html

