
LECTURE 10
DICTIONARIES

MCS 260 Fall 2020
Emily Dumas

REMINDERS
Work on:

Project 1 (due Friday, 6pm central)

Worksheet 4

Quiz 4

Docstrings now required for all functions & �les

Come to Tue/Thu discussion ready to share screen
and code (if at all possible)

DICTIONARIES
Lists and tuples are sequences: they store an ordered
collection of values that can be retrieved by index (a
nonnegative integer).

A dictionary or dict in Python is an unordered collection
of key:value pairs. Values can be retrieved using the
associated key, similar to indexing a list.

The values in a dictionary can be of any type, but there
are some restrictions on the keys.

Dictionaries are mutable.

Example of syntax for working with dictionaries:
>>> # define a new dict

>>> tuition = { "UIC": 10584,

... "Stanford": 50703,

... "Harvard": 46340 }

>>> # Access an item

>>> tuition["UIC"]

10584

>>> # Add or change an item

>>> tuition["PSU"] = 18454

>>> tuition

{'UIC': 10584,

 'Stanford': 50703,

 'Harvard': 46340,

 'PSU': 18454}

>>> # Remove an item

>>> del tuition["Harvard"]

>>> tuition

{'UIC': 10584, 'Stanford': 50703, 'PSU': 18454}

Mixed types are ok for keys or values.

Methods:

dict_keys, dict_items, dict_values types behave a lot like
list, and can be converted to a list with .

d = { 1: "fish", "two": "fish", "x": [7,6,5] }

>>> d.keys() # All keys (like range(len(L)))

dict_keys([1, 'two', 'x'])

>>> d.items() # All key-value pairs (like enumerate(L))

dict_items([(1, 'fish'), ('two', 'fish'), ('x', [7, 6, 5])])

>>> d.values() # All values

dict_values(['fish', 'fish', [7, 6, 5]])

list()

MEMBERSHIP TESTING
Membership in a dictionary means being a key!

Forgetting this is a very common source of
programming errors.

>>> d = { 1: "fish", "two": "fish", "x": [7,6,5] }

>>> "fish" in d

False

>>> 1 in d

True

OTHER LANGUAGES
Python dicts are examples of associative arrays, also
known as maps.

In other languages with a built-in associative array type,
the type is often called map or Map (e.g. in C++, Java,
Go)

The rules (allowable keys, type heterogeneity, etc.) vary
by language.

ITERATION OVER DICTS
dicts are iterable, but iterate over the keys.

for k in d: # loop over keys

 print(k,"is one of the keys")

for k in d: # loop over keys (index to get value)

 print("Key",k,"has value",d[k])

for k,v in d.items(): # loop over keys,value pairs

 print("Key",k,"has value",v)

It is common for the values in a dict to be dicts
themselves. This is the usual way to make a collection of
labeled data indexed by a key.

schooldata = {

 "UIC": {

 "fullname": "University of Illinois at Chicago",

 "tuition": 10584,

 "undergrad_students": 21641,

 },

 "Stanford": {

 "fullname": "Leland Stanford Junior University",

 "tuition": 50703,

 "undergrad_students": 7083

 },

 "Harvard": {

 "fullname": "Harvard University",

 "tuition": 46340,

 "undergrad_students": 6755

}

DICTIONARIES AS RULES

Output:

pr_replacements = {

 "accident": "unplanned event",

 "escape": "departure",

 "laser-sharks": "fish"

}

original = "an accident involving the escape of laser-sharks"

words = original.split() # ["an", "accident", ...]

for w in words:

 if w in pr_replacements:

 w = pr_replacements[w]

 print(w,end=" ")

print()

an unplanned event involving the departure of fish

HASHABLE TYPES
Not all types in Python can be used as dict keys.

Keys must allow hashing which typically requires
immutability.

Strings, tuples, and numeric types are all hashable. Lists
and dicts are not.

>>> d = dict() # empty dict

>>> d[[3,4,5]] = 6

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

>>> d[{ 5:"five" }] = 0

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'dict'

You can check if a value is hashable using the built-in
 function:hash()

>>> hash(1)

1

>>> hash(1.5)

1152921504606846977

>>> hash("Granny Smith")

2634656644181978377

>>> hash([1,2,3])

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

DICTIONARY COMPREHENSIONS
Analogous to list comprehensions, but using
 { key:value for name in iterable ... }

>>> words = ["Chicago", "cat", "cinemas"]

>>> word_data = { w: { "length": len(w),

... "all lower": w==w.lower() }

... for w in words }

>>> word_data

{'Chicago': {'length': 7, 'all lower': False},

 'cat': {'length': 3, 'all lower': True},

 'cinemas': {'length': 7, 'all lower': True}

}

REFERENCES
In :

ACKNOWLEDGEMENT
Some of today's lecture was based on teaching materials developed for MCS 260 by

.

REVISION HISTORY
2020-09-15 Initial publication

Downey
Chapter 11 covers dictionaries

Jan
Verschelde

http://greenteapress.com/thinkpython2/html/index.html
https://greenteapress.com/thinkpython2/html/thinkpython2012.html
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

