LECTURE 10

DICTIONARIES

MCS 260 Fall 2020
Emily Dumas

REMINDERS

e Work on:
= Project1 (due Friday, 6pm central)
= Worksheet 4
= Quiz4
e Docstrings now required for all functions & files

e Cometo Tue/Thu discussion ready to share screen
and code (if at all possible)

DICTIONARIES

Lists and tuples are sequences: they store an ordered
collection of values that can be retrieved by index (a
nonnegative integer).

A dictionary or dict in Python is an unordered
collection of key:value pairs. Values can be retrieved
using the associated key, similar to indexing a list.

The values in a dictionary can be of any type, but there
are some restrictions on the keys.

Dictionaries are mutable.

Example of syntax for working with dictionaries:

>>> # define a new dict
>>> tuition = { "UIC": 10584,
"Stanford": 50703,
. "Harvard": 46340 }
>>> # Access an item
>>> tuition["UIC"]

10584
>>> # Add or change an item
>>> tuition["PSU"] = 18454

>>> tuition
{'UIC': 10584,
'Stanford': 50703,
'Harvard': 46340,
'"PSU': 18454}
>>> # Remove an item
>>> del tuition["Harvard"]
>>> tuition
{'UIC': 10584, 'Stanford': 50703, 'PSU': 18454}

Mixed types are ok for keys or values.

d = { 1: "fish", "two": "fish", "x": [7,6,5] }

Methods:
>>> d.keys () # All keys (like range(len(L)))
dict keys([1l, 'two', 'x'])
>>> d.items () # All key-value pairs (like enumerate (L))
dict_items([(l, 'fish'), ('two', 'fish'), ('x', [7, 6, 5])1])
>>> d.values () # All wvalues

dict values(['fish', 'fish', [7, 6, 511)

dict_keys, dict_items, dict_values types behave a lot
like list, and can be converted to a list with 1ist ().

MEMBERSHIP TESTING

Membership in a dictionary means being a key!

>>> d = { : "fish", "two": "fish", "x": [7,6,5] }
>>> "fish" in d

False

>>> in d

True

Forgetting this is a very common source of
programming errors.

OTHER LANGUAGES

Python dicts are examples of associative arrays, also
known as maps.

In other languages with a built-in associative array
type, the type is often called map or Map (e.g. in C++,

Java, Go)

Therules (allowable keys, type heterogeneity, etc.)
vary by language.

ITERATION OVER DICTS

dicts are iterable, but iterate over the keys.

for k in d: # loop over keys
print (k,"is one of the keys")

for k in d: # loop over keys (index to get value)
print ("Key", k, "has value",d[k])

for k,v in d.items(): # loop over keys,value pairs
print ("Key", k, "has value",v)

It is common for the values in a dict to be dicts
themselves. This is the usual way to make a collection
of labeled data indexed by a key.

schooldata = {

"UIC": {
"fullname": "University of Illinois at Chicago",
"tuition": 10584,
"undergrad students": 21641,
}I

"Stanford": {
"fullname": "Leland Stanford Junior University",
"tuition": 50703,
"undergrad students": 7083
}I

"Harvard": {
"fullname": "Harvard University",
"tuition": 46340,
"mmnderarad stiidenta" . (755

DICTIONARIES AS RULES

pr replacements = {
"accident": "unplanned event",
"escape": "departure",
"laser-sharks": "fish"
}
original = "an accident involving the escape of laser-sharks"
words = original.split () # ["an", "accident", ...]

for w in words:
if w in pr replacements:

w = pr replacements|[w]
print (w,end=" ")
print ()

Output:

an unplanned event involving the departure of fish

HASHABLE TYPES

Not all types in Python can be used as dict keys.

>>> d = dict () # empty dict

>>> d[[3,4,5]] =

Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>

TypeError: unhashable type: 'list'

>>> d[| :"five™ }] =

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'dict'

Keys must allow hashing which typically requires
immutability.

Strings, tuples, and numeric types are all hashable.
Lists and dicts are not.

You can check if a value is hashable using the built-in
hash () function:

>>> hash (1)

1

>>> hash(1l.D5)

1152921504606846977

>>> hash ("Granny Smith")

26346566441819783777

>>> hash([1,2,3])

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

DICTIONARY COMPREHENSIONS

Analogous to list comprehensions, but using
{ key:value for name in iterable ... }

>>> words = ["Chicago", "cat", "cinemas"]
>>> word data = { w: { "length": len(w),
"all lower": w==w.lower () }
ce . for w in words }
>>> word data
{'Chicago': {'length': 7, 'all lower': False},
'cat': {'length': 3, 'all lower': True},
'cinemas': {'length': 7, 'all lower': True}

}

list

0] (1] (2]
| I |
l l
| "red"|[3.2 | [91]

index to value
ordered

dict
"baz’
"f00"] 19.31]

x| [7.5

key to value
unordered

REFERENCES

e In Downey:.
= Chapter 11 covers dictionaries

ACKNOWLEDGEMENT

e Some of today's lecture was based on teaching materials developed for MCS 260 by Jan
Verschelde.

REVISION HISTORY

e 2020-09-15 Initial publication

http://greenteapress.com/thinkpython2/html/index.html
https://greenteapress.com/thinkpython2/html/thinkpython2012.html
http://homepages.math.uic.edu/~jan/
http://homepages.math.uic.edu/~jan/

