Math 550 - David Dumas - Spring 2019

Problem Set 7

Due Monday, April 29 in class

Exercises: Work these out, but do not submit them.

- (E1) Let (V, Ω) be a symplectic vector space (with V finite-dimensional).
 - (a) If $W \subset V$ is an isotropic subspace, show that there is a symplectic basis e_i, f_i of V in which $W = \text{span}(e_1, \dots, e_k)$ for some k.
 - (b) If $W \subset V$ is a coisotropic subspace, show that there is a symplectic basis e_i, f_i of V in which $W = \text{span}(e_1, \dots, e_n, f_1, \dots, f_k)$ for some k.
 - (c) Show that W is isotropic if and only if W^{\perp} is coisotropic.
- (E2) Let V be a vector space of dimension 2n and Ω an alternating bilinear form on V, i.e. $\Omega \in \bigwedge^2 V^*$. Show that Ω is symplectic if and only if $\Omega^{\wedge n} \in \bigwedge^{2n} V^* \simeq \mathbb{R}$ is nonzero.
- (E3) Let *E* be a finite-dimensional vector space. Let $V = E \oplus E^*$, and define $\Omega_E((x, \varphi), (y, \psi)) = \psi(x) \varphi(y)$. Show that Ω_E is symplectic on *V*, and that $E \times \{0\}$ is Lagrangian.
- (E4) Show that the previous construction is the universal description of Lagrangians: If (V,Ω) is symplectic and $L \subset V$ is Lagrangian, then (V,Ω) is symplectomorphic to $(L \oplus L^*, \Omega_L)$ by a symplectomorphism taking L to $L \times \{0\}$.
- (E5) Let (M_i, ω_i) be a symplectic manifold for i = 1, 2. Let $\pi_i : M_1 \times M_2 \to M_i$ denote the projections onto the factors. Show that $\pi_1^* \omega_1 \pi_2^* \omega_2$ is a symplectic form on $M_1 \times M_2$, and that a map $f : M_1 \to M_2$ is a symplectomorphism if and only if its graph is a Lagrangian submanifold of $M_1 \times M_2$.

Problems: Complete and submit three of these.

- (P1) (Lee) Show that for a manifold M of positive dimension, the tautological form on T^*M is not the pullback of any differential form on M.
- (P2) It follows from our discussion of Hamiltonian vector fields that symplectic manifolds have many infinitesimal symmetries; for example, if $\alpha \in \Omega^2(M)$ is a symplectic form, then we have:
 - (*) For all $(x, v) \in TM$, there exists $V \in Vect(M)$ with $V_x = v$ and $\mathcal{L}_V \alpha = 0$.
 - (a) Work out the details to show that (*) holds for symplectic forms α .

How specific is (*) to symplectic forms? That is, one can ask whether (*) holds for any differential form $\alpha \in \Omega^k(M)$. Determine whether it holds for the following classes:

- (b) Closed 2-forms
- (c) Nondegenerate 2-forms
- (d) Nowhere zero 2-forms
- (e) Closed 1-forms
- (f) Nowhere zero 1-forms
- (g) Nowhere zero closed 1-forms

- (P3) (a) Let (M, ω) be a compact symplectic manifold. Show that $H^{2k}(M) \neq 0$ for all $k \leq \frac{1}{2} \dim(M)$.
 - (b) Give an example of a compact manifold *M* of even dimension with $H^{2k}(M) \neq 0$ for all $k \leq \frac{1}{2} \dim(M)$ but which does not have a symplectic form.