Math 550 – David Dumas – Spring 2019

Problem Set 3

Due Monday, February 25 in class

Exercises: Work these out, but do not submit them.

- (E1) Check that in both the topological and smooth categories, the operations of pullback and product over a fixed base for fiber bundles, as defined in lecture, yield fiber bundles.
- (E2) Give example of a fiber bundle with typical fiber \mathbb{R}^n for some *n* that is not isomorphic (as a fiber bundle) to any vector bundle.
- (E3) Recall that S^3 is a principal S^1 bundle over S^2 by the Hopf fibration. For each integer n, the Lie group S^1 acts on itself by the rule $z \cdot w = z^n w$. Let S_n^1 denote the space S^1 with this action of S^1 . Show that the total space of the associated bundle $S^3(S_n^1)$ is diffeomorphic to the lens space L(n, 1).
- (E4) Show that a principal bundle is trivial if and only if it has a section.
- (E5) Show that a principal bundle map (i.e. morphism) over the identity $B \rightarrow B$ is necessarily a bundle automorphism.

Problems: Complete and submit two of these.

- (P1) Let $\pi : P \to B$ be a principal *G*-bundle and *F* a space with an action of *G*. Prove that the two definitions of the *F*-bundle associated to *P* are equivalent, and that each gives a *G*-structure on a fiber bundle over *B* with typical fiber *F*. The definitions are:
 - Global quotient definition: The group *G* has a left action on the product space $P \times F$ by $g \cdot (p, f) = (p \cdot g^{-1}, g \cdot f)$. Let $P(F) := (P \times F)/G$ denote the quotient space, and $\tilde{\pi} : P(F) \to B$ the map induced by $(p, f) \mapsto \pi(p)$. Then $(P(F), B, \tilde{\pi})$ is the associated fiber bundle.
 - Local trivialization definition: Let {U_α}_{α∈A} be an open cover of B with associated local trivializations of P given by φ_α : π⁻¹(U_α) → U_α × G, and fiber transition maps t_{αβ} : U_α ∩ U_β → G. Define P(F) as the quotient space of

$$\bigsqcup_{\alpha \in A} (U_{\alpha} \times F)$$

by the equivalence relation generated by

$$(x, f) \in (U_{\beta} \times F) \sim (x, t_{\alpha\beta}(x) \cdot f) \in (U_{\alpha} \times F)$$

where $x \in U_{\alpha} \cap U_{\beta}$. The projection map $\tilde{\pi} : P(F) \to B$ is induced by the maps $(x, f) \mapsto x$ on each $U_{\alpha} \times F$ component.

- (P2) Let \mathbb{RP}^n denote the set of 1-dimensional subspaces of \mathbb{R}^{n+1} , which is a homogeneous space of the Lie group $\operatorname{GL}_{n+1}\mathbb{R}$. There is a line bundle $\tau \to \mathbb{RP}^n$ which can be described in two ways; show that these two descriptions are equivalent.
 - Let *P* denote the manifold $\operatorname{GL}_{n+1}\mathbb{R}$ considered as a principal *H*-bundle over \mathbb{RP}^n , where *H* is the stabilizer of a line $\ell \subset \mathbb{R}^{n+1}$. Then *H* acts on ℓ by linear maps, and so we have the associated vector bundle $\tau = P(\ell)$.
 - Consider the subset $\tau \subset \mathbb{RP}^n \times \mathbb{R}^{n+1}$ defined by

$$\tau = \{(l,p) \mid p \in l\}.$$

Then τ is an embedded submanifold and the restriction of the projection $\pi_1 : \mathbb{RP}^n \times \mathbb{R}^{n+1} \to \mathbb{RP}^n$ gives τ the structure of a smooth line bundle.