Math 445 – David Dumas – Spring 2018

Midterm Exam

Note: On this exam we use the notation $a \times b$ *for an element of a Cartesian product* $A \times B$ *.*

Instructions: Complete any three problems.

- 1. Consider the ordered set $X = \mathbb{N} \times \mathbb{N}$ with the dictionary order. In the order topology on *X*, determine whether each of the following sequences converges. If the sequence does converge, identify the point it converges to. In each case give a proof.
 - (a) $a_n = n \times 2$
 - (b) $b_n = 2 \times n$
- 2. (a) Write the definition of a *Hausdorff* topological space.(b) Prove that if X is a metrizable topological space, then X is Hausdorff.
- 3. (a) Write the definition of the *lower limit topology* on \mathbb{R} .
 - (b) Let $A \subset \mathbb{R}$ denote the set of rational numbers in the interval (0,1). Determine the closure of *A* in the lower limit topology on \mathbb{R} .
- 4. Let *X* be a topological space.
 - (a) Write the definition of a *limit point* of a set $A \subset X$.
 - (b) Suppose $A, B \subset X$ and that x is a limit point of $A \cup B$. Show that either x is a limit point of A or x is a limit point of B (or both).
- 5. (a) Let X be a topological space and \sim an equivalence relation on X. Write the definition of the *quotient topology* on X/\sim .
 - (b) Let $X = A \times B$ where A and B are topological spaces. Define an equivalence relation on X as follows:

 $a_1 \times b_1 \sim a_2 \times b_2$ if and only if $a_1 = a_2$

Show that X/\sim with the quotient topology is homeomorphic to A.