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4.2.1 The combinatorial complex

In order to smoothe our exposition, we have to consider the set of Γ0 of oriented
vertices, as well as the set Γ2 of oriented faces, even though in our context
vertices and faces are canonically oriented. We denote as usual α the element
α of Γi with the opposite orientation. The boundary ∂α of an oriented element
α of Γi is a tuple of elements of Γi−1, possibly with repetition. For instance, if
e is an edge then

∂e = (e+, e−).

A covering

We now consider for every α ∈ Γi a contractible open set Uα which is a
neighbourhood of the interior α̂, that is a vertex, the interior of the edge and
the face. We denote by Wi the union of all the open sets Uα so that α is in
Γi. Finally we choose for every pair (α, β) so that α ∈ ∂β, open sets Uα,β
homeomorphic to disks.

• Uα = Uα and Ue,f = Ue,f .

• ∀i, ∀α, β ∈ Γi,with α 6∈ {β, β}, Uα ∩ Uβ = ∅.

• For every edge e, Ue ∩W0 = Ue+,e t Ue−,e,

• For face f , Uf ∩W1 =
⊔
e∈∂f Ue,f .

Vector spaces and homomorphisms

We now are given a vector bundle L equipped with a flat connection ∇.
We consider the vector space Lα, which consists of section parallel of L|Uα .

Observe that we have a canonical trivialisation of L
∣∣
Uα

as Lα × Uα, and that
Lα = Lα.

Moreover, observe that for any pair (α, β) so that α ∈ ∂β, there is a natural
isomorphism iα,β from Lα to Lβ : if u is parallel section along Uα, iα,βu is the
unique parallel section along Uβ which coincides with u on Uα,β.

Exercise 4.2.1 Describe iα,β using a trivialisation of the bundle at every ver-
tex and the combinatorial connection associated to ∇.

A combinatorial complex

We consider the complex defined by the vector spaces

Ci
Γ = {ci : Γi → tα∈ΓiLα |ci(α) ∈ Lα and ci(α) = −ci(α)},
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and the coboundary operators d by

di : Ci
Γ → Ci+1

Γ , dic
i(βi+1) =

∑
αi∈∂βi+1

iαi,βi+1
ci(αi).

One checks that d ◦ d = 0. We define

H i
Γ(L) = Ker(di)/Im(di−1).

4.2.2 The Isomorphism Theorem

In this section, we prove that the two versions of the cohomology that we have
built are the same.

First we need to build a map between complexes. We associate to an ω ∈
Ωi(S;L) the element ω̂ in Ci defined by

ω̂(αi) =

∫
αi
ω.

The integration is understood in the canonical trivialisation of L
∣∣
Uαi

as Lαi ×
Uαi , since we have an identification Ωi(Uαi ;L) = Ωi(Uαi)⊗Lαi . We now claim

Proposition 4.2.2
d̂ω = dω̂.

Proof: This is an easy consequence of Stokes’s Formula and we shall only
check it when i = 1. We explain the technical details that we shall omit in
the sequel. Let f be an element of Γ2. Let ∂f = {e1, . . . , en}. We consider
f as a map from the closed disk D to S. We observe that we can write ∂D
as a reunion of closed intervals Ii so that f

∣∣
Ii

is a parametrisation of the edge
ei. By construction, the induced bundle f ∗L is trivialised as Lf × D. As a
consequence, if ω ∈ Ω1(S, L), then f ∗ω ∈ Ω(D)⊗ Lf . Now

d̂ω(f) =

∫
f

dω =

∫
D

df ∗ω

=

∫
∂D

f ∗ω

=
i=n∑
i=1

∫
Ii

f ∗ω.

Finally, we remark that ∫
Ii

f ∗ω = iei,f

∫
ei

ω.
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Hence
d̂ω(f) = dω̂(f).

Q.e.d.

It follows from this identification that we have a natural map u 7→ û from
H i
∇(S,L) to H i

Γ(S,L) so that

[ω̂] = [̂ω]

We now prove

Theorem 4.2.3 [Isomorphism theorem] The map u 7→ û from H i
∇(S,L)

to H i
Γ(S,L) is an isomorphism.

Again, to shorten our exposition we only prove this result for i = 1. We
prove this in two steps: injectivity and surjectivity of this map

Proposition 4.2.4 The map u 7→ û from H i
∇(S,L) to H i

Γ(S,L) is surjective.

Proof: We first prove that given c1 ∈ C1, there exists a neighbourhood U1

of Γ with U1 ∩ Uf is an annulus for all f , and a 1-form ω ∈ Ω1(S, L) so that

ω̂ = c1

d∇ω
∣∣
U1

= 0. (4.3)

By linearity, it suffices to show this for c1 such that there exists an edge e so
that c1(α) = 0 if α 6= e.

Let now ϕ be a real valued function defined on Ue so that ϕ = 0 on a
neighbourhood of Ue+,e and ϕ = 1 on a neighbourhood of Ue−,e. We now
consider

σ = ϕ· c1(e) ∈ Ω0(Ue;L).

Observe that d∇σ = 0 on Ue−,etUe+,e. It follows that β = d∇σ can be extended
smoothly to W1 ∪W0 by zero outside Ue. Let ψ is a function with support in
W1 ∪W0 which is equal to 1 on a neighbourhood U1 of Γ. Let

ω = ψβ,

extended by 0 outside W 1 ∪W0. Then ω fulfils our conditions (4.3).
Finally, let c1, U1 and ω as in Equations (4.3), and let’s suppose that dc1 = 0.

For any face f , Let γf be a circle which is a retract of the annulus Uf ∩ U1.
We then have ∫

γf

ω = dc1(f) = 0.
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It follows that ω|Uf∩U1 = dβf . We extend βf to Uf in any reasonnable smooth
way and replace ω by d∇βf on Uf , in order to promote ω to a closed form on
Uf . Performing this operation for every face f , we end up with a closed form
ω so that ω̂ = c1. Hence u 7→ û is indeed surjective. Q.e.d.

Proposition 4.2.5 The map u 7→ û from H i
∇(S,L) to H i

Γ(S,L) is injective.

Proof: We prove it only for i = 1 again. Let us assume that ω is closed and
such that ω̂ = dc0. We wish to prove that ω is exact. We proceed by steps
again.

We first notice that we can as well assume that ω = 0 on W0. Indeed ω –
being closed – is exact on a neighbourhood U0 of W0:

ω
∣∣
U0

= dα.

Hence using a function ϕ with support in U0 and equal to 1 on W0 we replace
ω by the cohomologous form

ω − d∇(ϕα),

which satisfies ω|W0 = 0.
Now we show that we can as well assume that ω̂ = 0. Indeed, we choose a

parallel section σ on U0 so that for every vertex v, we have σ(v) = c0(v). We
here choose U0 to have one connected component by vertex. It follows that
ω − d∇ϕσ satisfies the required condition.

Next we show that we can reduce to the case that ω = 0 on a neighbourhood
of Γ. Indeed, for every edge e, since ω is closed, ω|Ue = dαe, where α is and
defined on Ue. By construction αe is now parallel on U0 ∩ Ue. We can choose
αe so that αe = 0 on Ue+,e: indeed αe is parrallel on a neighbourhood O of
U e+,e. Thus αe = d∇β on such a neighbourhood. We may now replace αe
by αe − d∇ϕβ, where ϕ has support in O and is equal to 1 on Ue+,e. Since∫
e
ω = ω̂(e) = 0 it follows that αe is zero on the other connected component of

U0 ∩ Ue. Therefore, smoothing again by a function ψ with support in W1 and
equal to 1 on a neighbourhood of Γ, we get that

ω − d

(∑
e∈E

αe

)
,

is zero on a neighbourhood of Γ.
Finally, we observe that for every face f , ω|f = dβf . By our condition βf is

parrallel (and constant in the trivialisation) on a neighbourhood of Γ; there-
fore, substracting this constant, we can choose βf to be zero on a (connected)
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neighbourhood of Γ. In particular β =
∑

f∈F βf makes sense and we have

ω = dβ.

This concludes the proof.

4.2.3 Duality

In this section, we give the two versions of Poincaré duality: one for the de
Rham cohomology, one for the combinatorial version.

Symplectic complexes

Definition 4.2.6 We say a complex C• : 0 → C0 d→ C1 d→ C2 of degree 2 is
symplectic, if we have a

• a symplectic form ω on C1,

• a non-degenerate pairing ω on C0 × C2 such that

ω(dα0, α1) = ω(α0, dα1).

Proposition 4.2.7 The first cohomology is a symplectic vector space with
symplectic form [ω] such that

[ω]([α], [β]) = ω(α, β).

Proof: this follows at once from the fact that

ker(d1)o = im(d0), (4.4)

where V o denote the orthogonal with respect to ω of V ⊂ C1. Q.e.d.

The dual graph

We realise geometrically the dual graph Γ∗ in S. We denote by α 7→ α∗ the
map from Γi to γ2−i. As far as the boundary is concerned, we observe that

v ∈ ∂e =⇒ e∗ ∈ ∂v∗, (4.5)

e ∈ ∂f =⇒ f ∗ ∈ ∂e∗. (4.6)

If α ∈ Γ∗0, we choose a neighbourhood U∗α as above, requiring furthermore
that for v ∈ Γ0, Uv ⊂ U∗v∗ , for e ∈ Γ1, Ue ∩ U∗e∗ is contractible, and for


