
Math 569 / David Dumas / Spring 2017

Exercises

This list was last updated on 2017-03-27.

Note: The problems on the list may be occasionally updated with clarification or corrections, but
the numbering will never change. Make sure to refer to the problems by number when submitting a
solution.

(1) A non-orientable closed surface can always be represented as a sphere with k crosscaps
attached, for some k > 0; let us denote this surface by Nk. (Here attaching a crosscap
means removing a disk and gluing a Möbius strip in its place.) In particular, gluing a single
crosscap into the orientable surface Sg results in a surface homeomorphic to Nk for some k.
Determine k as a function of g, and give a detailed pictorial description of the process in
which “handles become crosscaps”.

(2) Provide details on the following aspects of the classification of surfaces that are omitted
from the proof of Theorem 2.2.13 in the text.
(a) The edge deletion and edge collapse operations in the first steps of the proof preserve

the filling property of the ribbon graph.
(b) The polygon surgeries described in the last step of the proof correspond to changes

in the ribbon graph. (Make explicit what these steps look like from the ribbon graph
perspective.)

(3) Show that gluing opposite sides of a polygon with 4g or 4g+ 2 sides gives a surface of
genus g. Do these gluing patterns correspond to ribbon graphs? If so, identify the ribbon
graph and the steps (as in Thm 2.2.13) that transform it to the standard form Γg.

(4) (This exercise is about correcting some details from section 2.4.2 in the text.) Consider the
free monoid on the set I indexing an open cover U of a space. Define a loop based at i0 ∈ I
to be an element of this monoid satisfying a certain condition, adapting Definition 2.4.4 in
the text. If the “inverse” of a loop is defined by reversing the order of symbols in the word,
determine an equivalence relation on the submonoid of loops based at i0 so that the quotient
is a group, and is isomorphic to π1(N1(U )) where N1(U ) is the 1-skeleton of the nerve of
U . Then, describe how to enlarge this equivalence relation using the 2-cells of the nerve so
as to give a quotient isomorphic to π1(N(U )).

(5) Let Γ be a ribbon graph with edge set E and vertex set V . A ribbon graph automorphism is
a pair of bijections fE : E→ E and fV : V →V that are compatible with the source and des-
tination maps and which preserve the cyclic orientation on the stars coming from the ribbon
structure. State this definition precisely, and the compute the ribbon graph automorphism
group of Γg and of the ribbon graph corresponding to identifying opposite sides of a 4g+2-
gon. (“Compute” in this problem means give generators and relations for the automorphism
group.)

(6) Let f be an automorphism of a ribbon graph Γ. Let S = SΓ.
(a) Show that action of f on the edge set induces a group automorphism f∗ : πΓ

1 (S)→
πΓ

1 (S) of the ribbon fundamental group.



(b) Construct an orientation-preserving homeomorphism F : S→ S such whose induced
map on the fundamental group is f∗.

(c) Construct an example in each genus g > 0 of a nontrivial ribbon graph automorphism
f such that f∗ is the identity map of π1S.

(7) Prove proposition 2.5.25 in the text (i.e. that the dual pairing for ribbon cochains induces a
well-defined, nondegenerate pairing on cohomology).

(8) (From the text.) Show that every vector bundle on the unit interval [0,1] is trivial.

(9) (a) Give an example of a nontrivial vector bundle L such that L ⊕L is trivial.
(b) Give an example of a nontrivial vector bundle L such that L ⊗L is trivial.
(c) Let’s say that a continuous map f : N→M is very surjective if every map homotopic

to f is surjective. Give an example of a nontrivial vector bundle L over some base M
and very surjective map f : N→M such that f ∗(L ) is trivial.

(10) Consider the surface S obtained by identifying opposite sides of a polygon with 2n sides.
Thinking of the polygon as a regular one, rotation of the polygon by angle π/n induces a
homeomorphism T : S→ S which has T 2n = idS. For which values of n can S be embedded
in R3 in such a way that T is the restriction to this embedding of a rigid motion? (A rigid
motion means any map R3→R3 that can be written in the form f (x) = Ax+b where b∈R3

and where A is an orthogonal matrix.)

(11) Verify that the dual connection ∇∗ described in section 3.3.2 satisfies the Leibniz rule.

(12) Prove that there is at most one connection φ ∗∇ on the pullback bundle φ ∗L which satisfies
equation (3.1) of section 3.3.2; here π : L → M is a vector bundle, φ : N → M a smooth
map, and ∇ a connection on L . That is, prove the uniqueness part of the construction of
the pullback connection. (Note that the proof of existence sketched in this part of the text
uses uniqueness.)

(13) Let L be a line bundle over M. Show that Hom(L ,L ) is a trivial line bundle. Furthermore,
show that Hom(L ,L ) is canonically trivial in the following sense: A local trivialization
φ of L over U ⊂M induces a local trivialization φ̃ of Hom(L ,L ). Show that there is a
global trivialization Φ : Hom(L ,L )→M×R such that for any local trivialization φ of L
over U we have φ̃ = Φ|

π−1(U).

(14) Describe the Möbius strip µ as a line bundle over S1 = R/Z using a covering of S1 by
trivializing intervals U,V where U ∩V has two connected components. (Identify U ,V with
intervals in R that map diffeomorphically to them under the quotient map R→R/Z.) Then
determine the compatibility conditions required of a pair of 1-forms AU ∈Ω1(U) and AV ∈
Ω1(V ) in order that the local connections D+AU on U ×R and D+AV on V ×R define a
connection on µ .

(15) Generalizing the previous exercise, give an atlas of local trivializations of the tangent bundle
of S2 using trivializing open sets U,V that are, respectively, open neighborhoods of the
upper and lower hemispheres. In this atlas, use stereographic projections (S2\{0,0,−1})→
R2 and (S2\{0,0,1})→R2 to identify U and V with open sets in the plane. Then determine
the compatibility condition required of a pair of 1-forms AU ∈ Ω1(U,End(R2)) and AV ∈
Ω1(V,End(R2)) in order to define a connection on T S2.



(16) Verify that the local expression of the curvature tensor R∇ is DA+ 1
2 [A∧A], where D+A is

corresponding local expression of ∇.

(17) Consider the trivial R2 bundle over S1 with the connection ∇ = D+A where A =
(

0 α
−α 0

)
for α ∈Ω1(S1,R).
(a) Show that this is a SO(2)-connection.
(b) When is this connection flat?
(c) When is this connection gauge-equivalent to the trivial connection?
(d) Calculate the holonomy representation of this connection.

(18) Show that if a connection ∇ is locally trivial, and if γ0 and γ1 are homotopic paths rel
endpoints, then Hol∇(γ0) = Hol∇(γ1). (That is, fill in the details of the sketch given in
lecture.)

(19) Let γs(t) be a smooth family of paths in M from x0 to x1. That is, suppose (s, t)→ γs(t) is a
smooth map [0,1]× [0,1]→M with γs(0) = x0 and γs(1) = x1 for all s. Let L be a vector
bundle over M and ∇ a connection on L . Define

Hs = Hol∇(γs) ∈ Hom(Lx0 ,Lx1).

Show that
d
ds

Hs =

(∫ 1

0
R∇

(
∂γs(t)

∂ t
,
∂γs(t)

∂ s

)
dt
)

Hs

The rough interpretation of this statement is: Under a small change in a path x0 to x1, say
from γ0 to γε , the change in holonomy is given by integration of the 2-form R∇ over the
“strip” {γs(t) |0≤ s≤ ε, 0≤ t ≤ 1}.

(20) Use the previous exercise to prove that the holonomy of a flat connection depends only on
the homotopy class of a path rel endpoints.

(21) Let π : L →M be a vector bundle of rank n. A submanifold F ⊂L is a subbundle of L
of rank r if each intersection Lx∩F is a subspace of Lx of dimension r, and if these vector
space structures and the restriction π|F give F the structure of a vector bundle of rank r.
(a) Let L be a vector bundle and F a subbundle of rank r. Let L be the typical fiber of

L . Fix a subspace F ⊂ L of dimension r. Show that for each m ∈M there is a local
trivialization of φ : L |U →U ×L over a neighborhood U of m with the property that
φ(F |U) = U ×F . That is, a vector bundle and a subbundle can be simultaneously
locally trivialized.

(b) Let L ′ and L be vector bundles over M, and let φ : L →L ′ be a bundle morphism
over the identity of M. Show that the set of fiberwise kernels of φ (respectively, fiber-
wise images) form a subbundle of L (resp. L ′) if and only if these subspaces have the
same dimension over each point of M.

(22) (This problem uses the concept of a subbundle, which is defined in exercise 21.) Let L be
a vector bundle of rank n and F a subbundle of rank r. Show that the union of the fiberwise
quotient vector spaces ⋃

m∈M

Lx/Fx

has the structure of a vector bundle of rank n− r.



(23) (a) Calculate Hk
∇
(S1,L ) for an arbitrary connection ∇ on L = S1×R. Describe an ex-

plicit basis for each space. Note that in this case the connection can be written as D+α

for α ∈Ω1(S1); express your answer in terms of α .
(b) Repeat the same for the Möbius strip, considered as a line bundle over S1. (First obtain

a global description of an arbitrary connection on this bundle, analogous to the one
given in the previous part for connections on S1×R.)

(24) Give an explicit formula for the operator dk
∇

whose existence is the subject of Proposition
4.1.4 in the text.

(25) Recall that both the trivial line bundle L0 := S1×R and the Möbius strip L1 can be viewed
as quotients of the trivial bundle R×R by an action of Z by bundle automorphisms, with
the generator acting by (x, t) 7→ (x+1,±t) (respectively). In each case, any periodic 1-form
on R defines a flat connection on the quotient bundle. Denote the connection associated to
a dx by ∇a (where a ∈ R).

On the torus T 2 = S1×S1, let Π1 and Π2 denote the projections onto the two factors. For
i, j ∈ {0,1}, let Li j denote the line bundle Π∗1(Li)⊗Π∗2(L j). Thus for example L00 is the
trivial line bundle, while L01 is nontrivial but restricts to a trivial bundle over each circle
S1×{pt}.

Now introduce a 2-parameter family of connections on ∇a,b on Li j defined by

∇a,b = Π
∗
1(∇a)⊗Π

∗
2(∇b).

Note that these are flat.
(a) Select a filling ribbon graph Γ in T 2 and compute the ribbon complex C•

Γ
and its coho-

mology (as a function of i, j,a,b). In particular, give bases for the cochain groups and
matrices for the differentials.

(b) Do the same for the dual ribbon graph Γ∗.
(c) The dual of the flat bundle (Li j,∇a,b) can be written in the same form, for different

values of i, j,a,b. Determine these.
(d) Combine the previous parts to compute the full symplectic complex C• associated to

the pair of dual ribbon graphs Γ,Γ∗. That is, in addition to giving bases and differential
matrices, also write matrices for the forms Ω02 and Ω11.


