Math 569 / David Dumas / Spring 2017

Textbook errata and clarifications

This document was last updated on 2017-02-09.

PDF page numbers refer to the version from https://www.math.u-psud.fr/~labourie/preprints/pdf/surfaces.pdf as retrieved on Jan 1, 2017; this PDF file has MD5 hash 0994b2e8f42087e613386bc5494e811b.

Page n	umber		
Book	PDF	Near	Comment
8	12	Def 2.2.1	A geometric edge should be a set $\{e, \bar{e}\}$ (i.e. unordered pair) rather than a tuple (e, \bar{e}) (ordered pair).
9	13	Exc 2.2.3	cyclic ordering
9	14	Fig 2.5	This graph is planar, but the ribbon graph is not.
n/a	30	Def 2.4.1	"finite sequence (e_1, \ldots, e_n) " (no capital <i>E</i>)
23	30	Def 2.4.2	The set $R_{\Gamma}^{v_0}$ of trivial loops based at v_0 must be defined so as to include faces which do not pass through v_0 ; here we make a loop based at v_0 by conjugat- ing such a face by a path from v_0 to a vertex of the face. This is the correct interpretation of "normally generated" in the case of multiple vertices.
24	31	Def 2.4.4	$U_{i_j} \cap U_{i_{j+1}} eq \emptyset$
24	31	Def 2.4.4-5	The free group on I would have inverses for the generators, which is not desirable here. One can instead work in the free monoid and introduce an inverse operation which reverses a word. On a suitable quotient this defines a group structure. The notion of trivial loop must also be modified to encode the normal closure of the subgroup generated by boundaries of 2-cells in the nerve.
34	42	Exc 2.5.23	Replace E_{Γ} with V_{Γ} .
38	47	-	Replace $\coprod \mathscr{U} \times U \times L$ with $\coprod U \times L$.
n/a	47	-	$g_{UV}(x).v$ means "apply the linear transformation $g_{UV}(x)$ to v ". Elsewhere the same has been denoted $g_{UV}(x)v$ (i.e. with no dot).
42	51	Def. 3.2.6	This definition uses notation like σ_m for the value of a section σ at the point <i>m</i> . (e.g. a_m and $A(\sigma^1, \dots, \sigma^n)_m$) Previously, the notation $\sigma(m)$ was used for this.
n/a	51	Def. 3.2.6	Replace Hom $(\mathscr{L}_1 \otimes \mathscr{L}_n, \mathscr{F})$ with Hom $(\bigotimes_{i=1}^n \mathscr{L}_i, \mathscr{F})$
	56	3.3.2	There are actually two kinds of pullback constructions here: Pullback by a smooth map of bases, and pullback by a gauge transformation of a fixed bundle. Only the first is discussed, but the latter type is implicitly used throughout section 3.3.3.
	60	Pf. of 3.3.16	Missing right parenthesis in the displayed equation.

Page number				
Book	PDF	Near	Comment	
	62	Def. 3.4.2	One of g_{e+} or g_{e-} should be replaced with its inverse (depending on whether this definition is considered to be pullback or pushforward of a connection by gauge transformation g . Also, this definition violates the convention estab- lished in the previous one that $\nabla(e)$ is denoted g_e . Here it is instead called h_e .	