Math 549: Differentiable Manifolds I – David Dumas – Fall 2017

Topic Outline

This is an outline of the topics we have covered this semester. It is in roughly chronological order.

- (1) First definitions
 - (a) Locally Euclidean topological space
 - (b) Topological *n*-manifold
 - (c) Smooth (C^{∞}) function on open set in \mathbb{R}^n
 - (d) Diffeomorphism between open sets in \mathbb{R}^n
 - (e) Smooth atlas, smooth structure on a topological manifold
 - (f) Smooth manifold, smooth manifold with boundary
 - (g) Smooth (C^{∞}) function on a smooth manifold
 - (h) Smooth map between smooth manifolds
 - (i) Diffeomorphism of smooth manifolds
 - (j) Open submanifold
- (2) First examples
 - (a) Vector spaces over \mathbb{R} and \mathbb{C}
 - (b) The unit sphere $S^n \subset \mathbb{R}^{n+1}$
 - (c) The *n*-torus $T^n = S^1 \times \cdots \times S^1$
 - (d) Real projective space \mathbb{RP}^n
 - (e) Complex projective space \mathbb{CP}^n
 - (f) The Grassmannian $G_k(V)$ of k-dimensional subspaces of a finite-dimensional \mathbb{R} -vector space V
 - (g) The upper half space (a manifold with boundary)
 - (h) The closed ball (a manifold with boundary)
- (3) Bump functions and partitions of unity
 - (a) Existence of nontrivial compactly supported smooth functions on $\mathbb R$
 - (b) Bump functions on \mathbb{R} (equal to 1 on an interval, compactly supported)
 - (c) Bump functions on \mathbb{R}^n and in smooth manifolds (equal to 1 on a neighborhood of a point)
 - (d) Compact exhaustions of topological manifolds and existence of locally finite coverings
 - (e) Partition of unity on a manifold: Definition, existence (subordinate to any cover)
- (4) Tangent vectors and differentials
 - (a) Definition of a tangent vector at p as a derivation of $C^{\infty}(M)$ at p
 - (b) Space $T_p M$ is isomorphic to $\mathbb{R}^{\dim M}$
 - (c) Local coordinates x_1, \ldots, x_n give basis $\frac{\partial}{\partial x_1}\Big|_p, \ldots, \frac{\partial}{\partial x_n}\Big|_p$
 - (d) Locality: Isomorphism $T_pU \simeq T_p\mathbb{R}^n$ for $U \subset \mathbb{R}^n$ open
 - (e) Tangent space to open submanifold
 - (f) Tangent vectors as velocity vectors of curves
 - (g) Differential of a smooth map: abstractly, and in local coordinates
- (5) Special classes of smooth maps
 - (a) Definitions: immersion, submersion, smooth embedding, smooth covering, local diffeomorphism
 - (b) Immersion and submersion are local properties, while embedding and covering are not
 - (c) Injective smooth immersion need not be a smooth embedding (e.g. lemniscate, irrational line on torus)

- (d) The Inverse Function Theorem (IFT)
- (e) IFT \implies An immersion is locally modeled on the inclusion of \mathbb{R}^k into \mathbb{R}^n for some $k \leq n$. (Local standard form of an immersion)
- (f) IFT \implies A submersion is locally modeled on the projection of R^k onto R^n for some $k \ge n$. (Local standard form of a submersion)
- (g) The Rank Theorem is the generalization of these local models to maps of constant rank.
- (h) Theorem: If $F: M \to N$ is a submersion, then $F^{-1}(q)$ is an embedded submanifold of M of dimension dim $(M) \dim(N)$. Idea: Local standard form gives charts for $F^{-1}(q)$.
- (i) Immersed and embedded submanifolds
- (j) Slice charts for embedded submanifolds
- (6) Regular and critical values of smooth maps
 - (a) Definition of critical point, regular value and critical value of a smooth map.
 - (b) Theorem: If q is a regular value of a smooth map $F: M \to N$, then $F^{-1}(q)$ is an embedded submanifold of M.
 - (c) Definition of a set of measure zero in \mathbb{R}^n
 - (d) Definition of a set of measure zero in a smooth manifold
 - (e) Sard's Theorem: The set of critical values of a smooth map has measure zero. (We skipped all discussion of the proof.)
 - (f) Corollary: Every smooth map has a regular value
 - (g) Corollary: A manifold of dimension k cannot surject a manifold of dimension n by a smooth map if k < n.
- (7) Tangent bundle and vector fields
 - (a) The tangent bundle as a union of tangent spaces
 - (b) Smooth structure on the tangent bundle, making it a manifold of dimension $2 \dim(M)$
 - (c) The projection $\pi: TM \to M$ is a submersion
 - (d) Definition of parallelizability
 - (e) \mathbb{R}^n is parallelizable
 - (f) Vector fields as sections of TM
 - (g) Vector fields as derivations of $C^{\infty}(M)$
 - (h) Vector field X in local coordinates: $X = \sum_{i} a_i \frac{\partial}{\partial x_i}$. Smoothness is equivalent to $a_i \in C^{\infty}(M)$.
 - (i) Vect(*M*), the set of all smooth vector fields, is a module over $C^{\infty}(M)$.
 - (j) Definition of the pushforward of a vector field by a diffeomorphism.
- (8) Integral curves and flows
 - (a) Definition of an integral curve of a vector field
 - (b) Being an integral curve is an ODE
 - (c) A smooth vector field has a unique maximal integral curve through a given point in the manifold. Proof using fundamental existence/uniqueness theorem in ODE.
 - (d) The (partial) flow of a vector field, $\Theta : \mathscr{D} \to M$ where $\mathscr{D} \subset \mathbb{R} \times M$ is an open neighborhood of $\{0\} \times M$.
 - (e) *X* is *complete* if $\mathscr{D} = \mathbb{R} \times M$
 - (f) Complete vector field induces a flow $\theta : \mathbb{R} \times M \to M$, $(t,m) \mapsto \theta_t(m)$, satisfying $\theta_t \circ \theta_s = \theta_{s+t}$.
 - (g) Conversely, a flow is uniquely determined by its generating vector field X, where $X_m = \frac{\partial}{\partial t} \theta_t(m) \Big|_{t=0}$
 - (h) Every vector field on a compact manifold is complete

- (9) Lie groups and actions
 - (a) Definition of a Lie group
 - (b) Examples: Vector spaces over \mathbb{R} and \mathbb{C} , S^1 , \mathbb{R}^* , \mathbb{C}^* , $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$, SO(n), SU(n)
 - (c) Left and right translation diffeomorphisms of a Lie group
 - (d) Lie groups are parallelizable
 - (e) Definition of Lie group homomorphism, isomorphism
 - (f) Lie group homomorphisms are maps of constant rank
 - (g) Lie group homomorphism is an isomorphism if and only if it is injective
 - (h) Lie subgroups (reminder: are *immersed* submanifolds)
 - (i) Definition of an action of a Lie group on a smooth manifold
 - (j) Examples of actions $(Aut(V) \text{ acts on } V, \operatorname{GL}_n(\mathbb{R}) \text{ acts on } \mathbb{R}^n, G \text{ acts on } G, G \times G \text{ acts on } G, \ldots)$
 - (k) A flow is equivalently an action of \mathbb{R}
 - (1) Definition of stabilizer, orbit under Lie group action
- (10) Lie algebras, Lie derivative, Lie bracket
 - (a) Definition of a Lie algebra (over \mathbb{R})
 - (b) Examples: (\mathbb{R}^3, \times) , commutator in an associative \mathbb{R} -algebra
 - (c) Lie bracket [X, Y] of vector fields as commutator of derivations
 - (d) $(\operatorname{Vect}(M), [\cdot, \cdot])$ is a Lie algebra
 - (e) Lie derivative $L_X Y$ as a derivative of Y along the flow of X
 - (f) Theorem: $[X, Y] = L_X Y$
 - (g) Lie bracket in local coordinates
 - (h) The Lie algebra Lie(G) of a Lie group G: The space of left-invariant vector fields on G
 - (i) Lie(G) is a Lie subalgebra of Vect(G)
 - (j) $\operatorname{Lie}(G) \simeq T_e G$ (an isomorphism of \mathbb{R} -vector spaces)
 - (k) The differential at e of a Lie group homomorphism is a Lie algebra homomorphism
 - (l) Left-invariant vector fields are complete
 - (m) Definition of the exponential map $\exp : \text{Lie}(G) \to G$
 - (n) The image of $\mathbb{R} \cdot x \subset \text{Lie}(G)$ by the exponential map is a 1-parameter subgroup of G
- (11) Cotangent spaces, cotangent vectors, and 1-forms
 - (a) The cotangent space T_p^*M
 - (b) Local coordinates x_i give a basis $dx_i|_p$ of T_p^*M
 - (c) Cotangent bundle T^*M as the union of cotangent spaces
 - (d) A 1-form is a section of the cotangent bundle
 - (e) Local expression for a 1-form: $\eta = \sum_i a_i dx_i, a_i \in C^{\infty}(M)$.
 - (f) Equivalent conditions for smoothness of a 1-form
 - (i) Smooth coordinate functions
 - (ii) Smooth as a map to T^*M (for a certain smooth structure on T^*M)
 - (iii) Gives a smooth function when evaluated on a vector field
 - (g) Definition of the pullback of a 1-form by a smooth map
 - (h) Relation of pullback F^* to adjoint of the linear map dF
 - (i) The differential df of a function $f \in C^{\infty}(M)$ is a 1-form
 - (j) The space $\Omega^1(M)$ of 1-forms is a $C^{\infty}(M)$ module
 - (k) Integral of a 1-form on \mathbb{R} over a closed interval [a,b]
 - (l) Integral of a 1-form on M over an oriented curve
- (12) Riemannian manifolds
 - (a) Definition of Riemannian metric, Riemannian manifold

- (b) Examples: ℝⁿ, induced metric on a submanifold of ℝⁿ, 2-sphere with round metric, hyperbolic plane ℍ²
- (c) Writing a Riemannian metric in local coordinates: $g = \sum_{i,j} g_{ij} dx_i \otimes dx_j, g_{ij} \in C^{\infty}(M)$
- (d) Symmetric tensor product, $\alpha\beta = \alpha \odot \beta = \frac{1}{2}(\alpha \otimes \beta + \beta \otimes \alpha)$
- (e) Writing a Riemannian metric using the symmetric tensor product (e.g. $dx^2 + dy^2 dxdy$)
- (f) Using a Riemannian metric g to define:
 - (i) Length of a tangent vector
 - (ii) Angle between two tangent vectors
 - (iii) Length of a curve
 - (iv) Distance between two points (infimum of path length)
 - (v) Ball of radius *r* centered at a point
- (g) Riemannian distance function gives M the structure of a metric space
- (h) Every manifold has a Riemannian metric
- (i) Isomorphism $T_p M \simeq T_p^* M$ induced by a Riemannian metric
- (j) "Musical" isomorphisms $Vect(M) \leftrightarrow \Omega^1(M)$ induced by a Riemannian metric
- (13) Exterior algebra and differential forms
 - (a) $\bigotimes^k V^*$ is the space of multilinear maps $V \times \cdots \times V \to \mathbb{R}$.
 - (b) $\bigwedge^k V^*$ is the space of alternating multilinear maps $V \times \cdots \times V \to \mathbb{R}$.
 - (c) $\Sigma^k V^*$ is the space of symmetric multilinear maps $V \times \cdots \times V \to \mathbb{R}$, but these play less of a role in this course
 - (d) Definition of $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \in \bigwedge^k V^*$, for $\alpha_i \in V^*$; value on vectors v_1, \ldots, v_k is the determinant of $(\alpha_i(v_i))_{ii}$
 - (e) For example, $\alpha \wedge \beta = \alpha \otimes \beta \beta \otimes \alpha$ if $\alpha, \beta \in V^*$
 - (f) Basis for $\bigwedge^k V^*$ in terms of a given basis of V^* ; multi-index notation ε_I
 - (g) Wedge product in general: $\wedge : \left(\bigwedge^k V^* \right) \times \left(\bigwedge^\ell V^* \right) \to \bigwedge^{k+\ell} V^*$
 - (h) $\bigwedge^{\bullet} V^* = \bigoplus_k \bigwedge^k V^*$, the exterior algebra of V^*
 - (i) Associativity and graded-commutativity of \wedge
 - (j) Definition of $\Omega^k(M)$, the space of smooth k-forms
 - (k) $\Omega^k(M)$ is a module over $C^{\infty}(M)$
 - (1) Equivalent conditions for the smoothness of a *k*-form (coordinates are smooth, section map is smooth, action on a tuple of smooth vector fields is smooth)
- (14) Orientations
 - (a) (We only consider finite-dimensional \mathbb{R} -vector spaces here)
 - (b) Orientation of a \mathbb{R} -vector space V as an equivalence class of ordered bases
 - (c) Orientation of a \mathbb{R} -vector space V as a connected component of $\bigwedge^{\dim V} V^*$
 - (d) Equivalence of these definitions
 - (e) Every vector space has exactly two orientations
 - (f) The standard orientation of \mathbb{R}^n (the vector space)
 - (g) Pointwise orientation of a manifold
 - (h) Orientation of a manifold as a smoothly varying pointwise orientation
 - (i) The standard orientation of \mathbb{R}^n (the manifold)
 - (j) Orientation of a manifold is equivalent to a nowhere-zero element of $\Omega^n(M)$
 - (k) Definition of orientability
 - (1) A connected manifold has either zero or two orientations
 - (m) Lie groups are orientable

- (15) Integration
 - (a) The space $\Omega_c^k(M)$ of compactly-supported *k*-forms
 - (b) Integral of a compactly supported *n*-form on \mathbb{R}^n
 - (c) Definition of the integral $\int_M \omega$ where $\omega \in \Omega_c^n(M)$ and *M* is an oriented manifold (using a partition of unity)
 - (d) Properties of the integral
 - (i) Independent of the partition of unity
 - (ii) Linearity
 - (iii) Invariance under orientation-preserving differomorphism
 - (iv) Positive for orientation forms
 - (v) Change of sign under change of orientation
 - (e) Volume form ω_g on an oriented Riemannian manifold (M,g)
 - (f) Volume of a compact oriented Riemannian manifold
 - (g) Integral of a compactly supported function over an oriented Riemannian manifold
- (16) Exterior derivative, Lie derivative, and interior products of forms
 - (a) Theorem: There exists a unique collection of maps d : Ω^k(M) → Ω^{k+1}(M) satisfying
 (i) ℝ-linearity
 - (ii) $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge (d\beta)$, where $\alpha \in \Omega^k(M)$
 - (iii) $d \circ d = 0$
 - (iv) (df)(X) = Xf for $f \in C^{\infty}(M) = \Omega^{0}(M)$
 - (b) Determining a coordinate formula for d using these properties
 - (c) Coordinate-free expression for *d* using Lie bracket
 - (d) Lie derivative $L_V \omega$ for $V \in \text{Vect}(M)$, $\omega \in \Omega^{\bullet}(M)$
 - (e) Expression for $L_V \omega(X_1, \dots, X_k)$ in terms of the Lie bracket of vector fields
 - (f) Interior product $i_V : \Omega^k(M) \to \Omega^{k-1}(M)$
 - (g) Cartan's "magic" formula $L_V \omega = i_V (d\omega) + d(i_V \omega)$
- (17) (Cartan-)Stokes Theorem
 - (a) Boundary orientation of an oriented manifold with boundary
 - (b) Theorem: If $\omega \in \Omega_c^{n-1}(M)$, *M* a smooth *n*-manifold with boundary, then

$$\int_M d\omega = \int_{\partial M} \omega.$$

- (c) Proof: Reduce to case of a form supported in a chart; use linearity, Fubini, and fundamental theorem of calculus.
- (d) Special case: Integral of $d\omega$ over a compact manifold (without boundary) is zero
- (e) Special case: Integral of df over a 1-manifold with boundary is a sum of \pm values of f at boundary points
- (f) Special case: All of the classical vector calculus integral theorems in \mathbb{R}^2 , \mathbb{R}^3
- (g) Divergence of a vector field on an oriented Riemannian manifold, $\operatorname{div} X \in C^{\infty}(M)$, uniquely determined by $(\operatorname{div} X)\omega_g = d(i_X\omega_g)$
- (h) Divergence Theorem on a Riemannian manifold, reduction to Cartan-Stokes Theorem
- (18) de Rham cohomology
 - (a) Definitions: Closed form, exact form, cohomologous forms
 - (b) $H^k(M) = \{ \text{ closed } k \text{-forms } \} / \{ \text{ exact } k \text{-forms } \} \text{ is a } \mathbb{R} \text{-vector space}$
 - (c) $H^{\bullet}(M) = \bigoplus_k H^k(M)$ is a graded-commutative algebra over \mathbb{R} ; product induced by wedge of forms
 - (d) $[\omega]$ denotes the class of a closed *k*-form ω in $H^k(M)$

- (e) If F : M → N is smooth, then pullback of forms induces an ℝ-algebra homomorphism F* : H•(N) → H•(M).
- (f) $H^{\bullet}(M \coprod M') \simeq H^{\bullet}(M) \oplus H^{\bullet}(M')$
- (g) Diffeomorphic manifolds have isomorphic cohomology algebras
- (h) Definition of smooth homotopy of maps, smooth homotopy equivalence of manifolds
- (i) Theorem: Smoothly homotopic maps induce the same pullback map on cohomology
- (j) Proof using homotopy operator $h: \Omega^k(M \times I) \to \Omega^{k-1}(M)$
- (k) Corollary: Smoothly homotopy equivalent manifolds have isomorphic cohomology
- (19) Calculating de Rham cohomology
 - (a) $H^0(M)$ is the set of locally constant functions on M, hence $H^0(M) \simeq \mathbb{R}^E$ where E is the set of connected components of M
 - (b) Direct calculation of $H^{\bullet}(S^1)$
 - (c) Mayer-Vietoris sequence
 - (d) Application: Inductive calculation of $H^{\bullet}(S^n)$
 - (e) Application: de Rham cohomology of punctured \mathbb{R}^n
 - (f) For *M* compact, connected, and oriented (no boundary):
 - (i) $H^n(M) \simeq \mathbb{R}$
 - (ii) Integration provides such an isomorphism, $[\alpha] \mapsto \int_M \alpha$
 - (iii) Cartan-Stokes theorem shows the integration map is well-defined.
 - (iv) In particular $[\omega]$ is nonzero if ω is a volume form (and same for $[f\omega]$ if $f \ge 0$ and f not identically zero)
 - (v) Showing that the integration map has no kernel uses the Poincareé Lemma with Compact Support (Lee, Lemma 17.27)
- (20) Degree theory
 - (a) Equivalent definitions of the degree deg(F) for $F : M \to N$, with M and N compact, connected, oriented manifolds of the same dimension:
 - (i) For $\omega \in \Omega^n(N)$ we have

$$\int_M F^* \omega = \deg(F) \int_N \omega$$

(ii) For a regular value q of F, we have

$$\deg(F) = \sum_{p \in F^{-1}(q)} \operatorname{sgn}(p)$$

where sgn(p) = 1 if dF_p is orientation-preserving, and sgn(p) = -1 if dF_p is orientation-reversing.

- (b) Using integration isomorphisms $H^n(M) \simeq \mathbb{R}$ and $H^n(N) \simeq \mathbb{R}$, the pullback map F^* on H^n corresponds to multiplication by deg(F) (equivalent to definition (1) above)
- (c) Homotopic maps have the same degree
- (d) $\deg(G \circ F) = \deg(G) \deg(F)$
- (e) Degree of a diffeomorphism is ± 1 depending on whether it preserves orientation
- (f) Degree of the antipodal map of S^n is $(-1)^{n+1}$
- (g) For self-maps of S^n , any map without fixed points is homotopic to the antipodal map.
- (h) Application: Smooth Brouwer theorem: Every smooth map from the closed *n*-ball to itself has a fixed point
- (i) Application: S^n has a nowhere-vanishing vector field if and only if n is odd
- (21) Poincaré Duality
 - (a) Statement of Poincaré duality for compact oriented *n*-manifold

- (i) As an isomorphism $H^k(M) \simeq (H^{n-k}(M))^*$
- (ii) As a nondegenerate bilinear pairing $H^k(M) \times H^{n-k}_c(M) \to \mathbb{R}$, given by

$$([\alpha], [\beta]) \mapsto \int_M \alpha \wedge \beta$$

- (b) Compactly supported de Rham cohomology $H_c^{\bullet}(M)$
- (c) Statement of Poincaré duality for oriented *n*-manifold, as duality between H^{\bullet} and H_{c}^{\bullet}
- (d) Calculating $H_c^{\bullet}(\mathbb{R}^n)$
- (e) Sketch of proof of Poincaré duality theorem for compact manifolds
 - (i) The Five Lemma
 - (ii) Extension by zero maps and the Mayer-Vietoris sequence for H_c^{\bullet}
 - (iii) Good covers: Definition, existence
 - (iv) A compact manifold has a finite good cover
 - (v) Inductive proof of PD for any oriented manifold with finite good cover: (A) $\mathbb{D}_{\mathbb{P}^n}$ and $U^{\bullet}(\mathbb{D}^n)$
 - (A) Base case: $H^{\bullet}(\mathbb{R}^n)$ and $H^{\bullet}_c(\mathbb{R}^n)$.
 - (B) Inductive step: Write *M* as $U \cup V$, where $U = (U_1 \cup \cdots \cup U_N)$ and $V = U_{N+1}$. Apply the Five Lemma to Mayer-Vietoris for H^{\bullet} and the dual of Mayer-Vietoris for H_c^{\bullet} .
- (22) Distributions and the Frobenius Theorem
 - (a) Definition of a smooth distribution $D \subset TM$ of rank k (smoothness using local frames)
 - (b) The space of sections $\Gamma(D)$ and local sections $\Gamma(U,D)$, $U \subset M$
 - (c) Definition of an integral manifold of a distribution: Immersed submanifold $N \hookrightarrow M$ such that $T_p N = D_p$ for all $p \in N$.
 - (d) Integrable distribution: There exists an integral submanifold through each point
 - (e) The span of a nowhere-vanishing vector field is an integrable distribution of rank 1
 - (f) The distribution of rank 2 on \mathbb{R}^3 spanned by $X = \frac{\partial}{\partial x} + y \frac{\partial}{\partial z}$ and $Y = \frac{\partial}{\partial y}$ is not integrable
 - (g) *Involutive* distibution: $\Gamma(D)$ is a Lie subalgebra of Vect(M).
 - (h) Annihilator $\mathscr{I}(D) \subset \Omega^{\bullet}(M)$ of a distribution *D* is an ideal
 - (i) *Strongly integrable* distribution: Everywhere locally expressible as span of $\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_k}$ for a suitable local coordinate system (x_1, \ldots, x_n) .
 - (j) Frobenius theorem: The following are equivalent:
 - (i) *D* is strongly integrable
 - (ii) D is integrable
 - (iii) D is involutive
 - (iv) $\mathscr{I}(D)$ is a differential ideal
 - (k) Proof sketch:
 - (i) Strongly integrable \implies integrable: immediate
 - (ii) Integrable \implies involutive: The Lie bracket can be computed on a submanifold
 - (iii) Involutive \implies strongly integrable: This is the core of the proof; the key is to construct a Lie-commuting local frame for *D*, whose commuting flows then give the adapted local coordinates
 - (iv) Involutive $\iff \mathscr{I}(D)$ is a differential ideal: Not difficult, but we skipped this