Homework 7

Due Monday, October 30 at 1:00pm

- (1) Lee, Chapter 11, Problem 7, on page 300.
- (2) Let G be a Lie group with Lie algebra \mathfrak{g} . Recall that \mathfrak{g} is the subalgebra of Vect(G) consisting of left-invariant vector fields. Show that the following vector spaces are naturally isomorphic to one another, and describe the isomorphisms explicitly:
 - $\mathfrak{g}^* = \operatorname{Hom}(\mathfrak{g}, \mathbb{R})$, the linear dual of the vector space underlying \mathfrak{g} .
 - The subspace of $\Omega^1(G)$ consisting of left-invariant 1-forms, i.e. the space of all 1-forms ω such that $L_g^* \omega = \omega$ for all $g \in G$.
 - The cotangent space at the identity, T_{ρ}^*G .
- (3) Let $G = \operatorname{GL}_2\mathbb{R}$, and let $\omega_{i,j} \in \Omega^1(G)$ denote the left-invariant 1-form on *G* which corresponds, by the isomorphism constructed in the previous problem, to the element of $T_e^*G \simeq \operatorname{Hom}(\operatorname{M}_{2\times 2}(\mathbb{R}),\mathbb{R})$ given by $A \mapsto A_{i,j}$ (the linear form giving the *i*, *j* matrix entry).

Compute
$$\int_{\gamma} \omega_{i,j}$$
 for each of the following oriented curves in *G*:
(a) $\gamma(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ for $t \in [0, 1]$.
(b) $\gamma(t) = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$ for $t \in [0, 1]$.
(c) $\gamma(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$ for $t \in [0, 2\pi]$.
[ND]

- (4) Lee, Chapter 13, Problem 4, on page 345.
- (5) Recall \mathbb{H}^2 denotes the Riemannian manifold whose underlying smooth manifold is $\{(x, y) \in \mathbb{R}^2 | y > 0\}$ with Riemannian metric $g_{\mathbb{H}^2} = \frac{1}{y^2}g_{\mathbb{R}^2}$ where $g_{\mathbb{R}^2}$ is the Euclidean metric (which Lee denotes by \bar{g} in Example 13.1).

Show that the Riemannian distance function $d_{\mathbb{H}^2}$ satisfies

$$d_{\mathbb{H}^2}((0,1),(0,y)) = \log y.$$

(Hint: A useful intermediate step would be to show that the paths $\gamma(t) = (x(t), y(t))$ and $\gamma^{\text{vert}}(t) = (0, y(t))$ satisfy $L(\gamma^{\text{vert}}) \leq L(\gamma)$.