Math 549: Differentiable Manifolds I – David Dumas – Fall 2017

Homework 5

Due Monday, October 9 at 1:00pm

(1) Consider the binary operation on \mathbb{R}^2 defined by the formula

$$(x,y) \cdot (x',y') = (x+x',y+e^{x}y').$$

- (a) Show that this gives a Lie group structure on \mathbb{R} with identity element e = (0,0). For the rest of this problem, let *G* denote this Lie group.
- (b) Show that G is not isomorphic (as a Lie group) to $(\mathbb{R}^2, +)$.
- (c) Sketch the following vector fields on G:
 - (i) The extension of $\frac{\partial}{\partial x} \Big|_{a}$ to a left-invariant vector field.
 - (ii) The extension of $\frac{\partial}{\partial x} \Big|_{a}$ to a right-invariant vector field.
 - (iii) The extension of $\frac{\partial}{\partial y}\Big|_{\rho}$ to a left-invariant vector field.
 - (iv) The extension of $\frac{\partial}{\partial y}\Big|_{a}$ to a right-invariant vector field.

(Label or caption each sketch so it is clear which vector field is shown!)

- (2) Lee, Chapter 8, Problem 10, on page 201. (Computing a pushfoward.)
- (3) Let *G* be a Lie group and $a \in G$. Let $I_a : G \to G$ be defined by $I_a(g) = aga^{-1}$. Show that I_a is a Lie group automorphism.
- (4) Lee, Chapter 7, Problem 13, on page 172. (The unitary group.)
- (5) Lee, Chapter 7, Problem 16, on page 172. $(SU(2) \simeq \mathbb{S}^3)$
- (6) Consider \mathbb{S}^3 as the unit sphere in \mathbb{C}^2 , i.e. $\mathbb{S}^3 = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1|^2 + |z_2|^2 = 1\}$. Define an action of \mathbb{S}^1 on \mathbb{S}^3 by $\zeta \cdot (z_1, z_2) = (\zeta z_1, \zeta z_2)$.
 - (a) Show that this is a smooth action.
 - (b) Show that the orbits are circles (i.e. each orbit is an embedded submanifold diffeomorphic to \mathbb{S}^1).
 - (c) Show that two points of \mathbb{S}^3 lie in the same orbit of this action if and only if they span the same 1-dimensional complex subspace of \mathbb{C}^2 .

This action of \mathbb{S}^1 on \mathbb{S}^3 is called the *Hopf action*.

- (7) Let $\Theta : \mathbb{R} \times \mathbb{S}^3 \to \mathbb{S}^3$ be defined by $\Theta(t, (z_1, z_2)) = (e^{it}z_1, e^{it}z_2)$.
 - (a) Show that this is a smooth flow on \mathbb{S}^3 .
 - (b) Calculate the vector field $V \in \text{Vect}(\mathbb{S}^3)$ the is the infinitesimal generator of this flow. Write your answer in terms of the realization of $T_{(z_1,z_2)}\mathbb{S}^3$ as a subspace of $T_{(z_1,z_2)}\mathbb{C}^2$ (e.g. in terms of the basis $\frac{\partial}{\partial x_k}, \frac{\partial}{\partial y_k}$ where $z_k = x_k + iy_k$).
 - (c) Show that the vector field V does not vanish at any point of \mathbb{S}^3 .

This flow on \mathbb{S}^3 is called the *Hopf flow*.