Homework 12

Due Monday, December 4 at 1:00pm

- (1) Let ℓ be a line in \mathbb{R}^3 . Let $a \in \mathbb{R}^3 \ell$. Compute the de Rham cohomology of $M = \mathbb{R}^3 (\ell \cup \{a\})$.
- (2) Let ℓ, ℓ' be two lines in \mathbb{R}^3 that intersect at a point *p*. Compute the de Rham cohomology of $M = \mathbb{R}^3 (\ell \cup \ell')$.
- (3) Let $E = \{(t, t^2, t^3) | t \ge 0\} \subset \mathbb{R}^3$. Compute the de Rham cohomology of $M = \mathbb{R}^3 E$.
- (4) Recall that $\Omega_c^k(M)$ denotes the space of compactly supported *k*-forms.
 - (a) Show that one can define cohomology spaces

$$H_c^k(M) := \{ \ker d : \Omega_c^k(M) \to \Omega_c^{k+1}(M) \} / \{ \operatorname{im} d : \Omega_c^{k-1}(M) \to \Omega_c^k(M) \}$$

analogously to the de Rham cohomology discussed in lecture. (What needs to be shown here?)

(b) Show that if M is connected, then $H_c^0(M) = 0$ if and only if M is not compact.

(c) Compute
$$H_c^{\bullet}(\mathbb{R})$$
.