Math 535: Complex Analysis — Spring 2016 — David Dumas
Practice Final Exam Solutions

e Complete five of the problems below.

e Each problem is worth 10 points.

e If you complete more than three problems (which is not recommended) your score will be
the sum of your five best problem scores.

Problems:
(1) Compute

7{ dz
5125600z — 23 + 25 — 997°

where S' denotes the unit circle {z : |z| = 1} with the counter-clockwise orientation.

Solution. We use the residue theorem. The integrand has a simple pole at the origin, and
we must determine whether it has any other poles in the unit disk. Let f(z) = 25600z —
22+ 22 — 9972 denote the denominator, and let

g(z) = 25600z — 100z° = 100z(256 — z°)
which is a polynomial with a root at z = 0 and all of its other roots on |z| = 2. Since
f2)=gl)++2 -2
we find for |z| = 1 that
f(2) —¢(z)| <3
whereas
1£(2)] > |[25600z| — [992°|| > 25501
also for |z| = 1. Thus |f —g| < |f] on S!, and by Rouché’s theorem, f and g have the same

number of roots in the unit disk, i.e. one.
Therefore the integral we want to compute is equal to

1 z 1 i
RS0y = N F ) T 2025600 — 2+ ¢F — 998 | 12800

(2) Let
7 Z 7"
f"@:exp(‘ <I+E+'”+Z))‘

(a) Show that f, converges locally uniformly on A = {z : |z| < 1}, and identify the limit
function.
(b) Does f,, converge locally uniformly on |z| < 2?

Solution. )
(a) The Taylor series for the principal branch of log(1 —z) is — Y2, %, and f, = exp(s,)
where s, is the n™ partial sum of this series. Since log(1 — z) is holomorphic in A, we have



(3) Find the Laurent expansion for the function

sp — log(1 — z) locally uniformly in this disk. Thus if we can show that locally uniform
convergence is preserved by composition with exp, it will follow that

fn—exp(log(l—z2))=1—z2

on A.

On any closed disk D in C there is a constant M such that |exp(z) —exp(w)| < M|z —w|;
in fact, we can take M = sup,.p,|exp(z)|. For any such D contained in A and any € > 0
we therefore have

[/n(2) = (1 =2)| = [exp(sn(2)) —exp(log(1 —2))[ <&

for all z € D once we take n large enough that |s,,(z) —log(1 —z)| < €/M, which is possible
by the uniform convergence of s, on D. Thus f, — (1 —z) locally uniformly on A.

(b) No. If f, had a locally uniform limit on {z : |z| < 2} then the limit would be a
holomorphic function equal to 1 —z on A, and hence everywhere. However 1 — z has an
isolated zero at z = 1, and by Hurwitz’s theorem it cannot be the locally uniform limit of
the sequence of nowhere-vanishing functions f, = exp(s,).

12
2(z+1)(z—2)
Solution. The annulus is centered at zero, so this Laurent expansion will consist of
powers of z = (z—0). One can proceed by the general formula for coefficients or by

partial fraction decomposition. We choose the latter.
Notice that

in the annulus 1 < |z| < 2.

12 3(z—2) 4 1
2 - 2 + :
Z(z+1)(z—2) b4 z+1 z-2
In |z| > 1 we have

4 4 1 4
== =——(1—z 4z 227+
z+1 2142771 Z ( )
=4z ' pdr -4 At -
where the expression in parentheses is a convergent geometric series. Similarly, using
|z| < 2 we have
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Adding these series we find:

12 - I < ]
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(4) Compute Al

0 x*+5x244°
Solution. We convert to a contour integral and use residues. Let
2 2
Z <
flz)=

A152+4 (ZH1)(2+4)
be the integrand and and let

= /Ooof(x)dx

denote the integral in question. Since f(x) is even we have 21 = [ f(x)dx

Let Dg denote the closed contour in C that is the concatenation of the real interval
[—R,R], oriented in the increasing direction, and the counterclockwise orientation of the
upper semicircle on |z| = R. Denote the latter semicircle by Cg. Then we have

. f(z)dz = /_I;f(x)dx+/CR f(z)dz

Since f has a zero of order 2 at infinity, for large |z| it is bounded by M/|z|?, where M is a
constant. Thus for large R we have

M
< TR—
R2

f(2)dz
Cr

which goes to zero as R — oo, hence

lim f( z—hm/ fx)dx=2I

R—yo0 R—

The left hand side is constant for R large enough and is equal to the sum of residues in the
upper half plane. Specifically, we find

I = mi(Res,—;f(z) + Res;=2if(2))

since z = i and z = 2i are the poles in the upper half plane. Both of these poles are simple,

so we have
2
. . . <
Rese—if (&) = Im(e =S @) = I e vy
T Q2)@2+4) 6
and
. . Z2
Res,—»if(z) = Zlglei(z— 2i)f(z) = zli>21 2+ 1)(z+20)

42 —i

T @d2+1)(2it+2) 3°

Substituting, we find

I ] T
T=mi(t -5 =2
mile—3) =%



(5) Does there exist an entire function f with no zeros and so that the real solutions of the
equation f(x) = 1 are exactly the prime numbers? (That is, f(p) = 1 for each prime
p € N, and if x € R is not a prime, then f(x) # 1.)
Either construct such a function or prove that no such function exists.

Solution. We will construct such a function f. Suppose g is an entire function which
has zeros only at the primes, and which is real on R. Then f = exp(g) has the desired
properties:
e As the exponential of a function, f is never zero
e The equation f(x) = 1 is equivalent to g(x) = 2mik and k € Z. However, since g(x) €
R for x € R, the only possibility for such x is k = 0, and the only zeros of g are the
primes.
The construction of g is easily accomplished by the Weierstrass factorization theorem.

Since
1
Y 5<) 2=
p prime p n=1
the infinite product of genus one

- 1L(-3)e(3)

defines an entire function whose zero set is the set of primes. Furthermore, each factor in
the product is real when z € R, hence g is real on R.

(6) Construct a conformal mapping f :<Q— € where
v/
Q={z: 0< e <1, Jarg(z)] < ¢}

and
Q=H\{iy : y€(0,535]}.

Solution. First consider the function /(z) = z8, which satisfies arg(h(z)) = 8arg(z) and
therefore maps < conformally the slit disk
N={z:0<|z]<1,arg(z) € (-7, @)} =A\{x € R,x <0}

Now we apply a M6bius transformation to map the disk to the upper half-plane, chosen so
as to map the slit of A’ to the correct interval on the imaginary axis. Specifically, let
d+z
g(Z) = ll—_Z .
Since g(—1) =0, g(i) = —1, g(1) = o we have that g maps the unit circle to the real axis.

Also, g(0) = i shows that the unit disk maps to the upper half-plane, and that the interval
(—1,0] on R maps to a line or circular arc in H with endpoints 0 and i. Calculating

o(2) = ,1+?: (_,1+z) _ 2@

1-7 1—z2

we find that z = Z implies g(z) = —g(z), that is, the correspondence w = g(z) maps real
z to purely imaginary w. Thus the slit (—1,0] of A’ corresponds by g to the line segment



{iy : y € (0,1]}. Finally, multiplying by 535 preserves H and transforms this segment to
the one in the definition of €.
Composing these operations, we find

1+28
1—278

f(z) =535g(h(z)) = 535i

is a map with the desired properties.

(7) Can a (real-valued) harmonic function on an open set in C have an isolated zero? Offer an
example or a proof that it is impossible.

Solution.  No, this is impossible. Suppose u(a) = 0 were isolated. Then for suffi-
ciently small p we have that {z : |z—a| < p} is contained in the domain of u and that
2(0) = u(a+ pe'®) is nonzero for all 8. Since g(8) is a continuous function of @ with no
zeros, it is either everywhere positive or everywhere negative. In either case we conclude

02” 2(0)d6 # 0. However, by the mean value property of harmonic functions we have

2r
0=ua) = [ s(0)a0.

a contradiction.

(8) Write a formula for a conformal mapping from the upper half plane to an equilateral
triangle of unit side length.

Solution. By the Schwarz-Christoffel theorem, for any base point zg € H the mapping

0= %
8§@)=| 5"
0§30 - 1)
is conformal onto a triangle in C with internal angles (7/3,7/3,/3) at vertices corre-
sponding to (0, 1,e) € dH. Equiangular triangles are equilateral, so we need only multiply

by a suitable real constant so that the side length is 1.
The formula above gives that the side length of the image triangle is

/1 dx _/1 dx
0 x%(x—l)% 0 x%(l—x)%,

where the last equality holds by factoring out the constant (— 1)_% of modulus one, leaving
a positive integrand. Thus we find
[t
2 2
20 §3(6-1)3

1
/ dx
2 2
0 x3(1—x)3

1 il
Remark. It can be shown that / 5 dx > = (32) (6).
0 xé(l_x)é 3

lg(1) —g(0)| =

f(z)=

has the desired properties.




