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(C1) Show that any zero of the Riemann zeta function with nonzero imaginary part lies on the line
Re(z) = 1

2 .

(C2) Let f (z) be an analytic function defined on C. The Newton map of f (z) is the function

N f (z) = z− f (z)
f ′(z)

.

Newton’s method is a computational method for locating zeros of the function f (z), starting from
an initial guess z0. We define a sequence {zi} by zi+1 = N f (zi). We say that the method succeeds if
the sequence zi converges to a point z∞ such that f (z∞) = 0, and that it fails otherwise. (Note that
the method may fail because N f (zk) = ∞ for some k, in which case the iteration stops.)
(a) If p(z) = (z− A)(z− B) is a quadratic polynomial with distinct roots A,B ∈ C, show that

Newton’s method succeeds if and only if z0 is closer to one of the two roots; equivalently, the
method fails if and only if z0 lies on the line perpendicularly bisecting the segment AB. (It
might be instructive to think about the polynomials z2−1 and z2 +1.)

(b) Say something nontrivial about what happens when Newton’s method fails for a quadratic
polynomial. (e.g. Why does it fail? Though the sequence does not converge to a root, can you
describe its long-term behavior?)

(C3) A smooth function f (θ) on the unit circle can be extended to a harmonic function F(z) on the unit
disk using the Poisson integral formula. Given f (θ), define another function g(θ) on the circle by

g(θ) =
1

2π

∫ 2π

0
f (φ)cot

(
θ −φ

2

)
dφ .

Note that the integrand has a singularity at θ = φ , so the integral should be understood as a principal
value

g(θ) = lim
ε→0+

1
2π

∫
|φ−θ |>ε

f (φ)cot
(

θ −φ

2

)
dφ .

Let G(z) denote the harmonic extension of g(θ). Show that F(z) and G(z) are harmonic conjugates,
i.e. that F(z)+ iG(z) is an analytic function.

(C4) The identity

cos(nθ)+ isin(nθ) = einθ =
(

eiθ
)n

= (cos(θ)+ isin(θ))n

shows that for each integer n > 0 there is a polynomial Tn(x) with the property that

Tn(cos(θ)) = cos(nθ).

(a) Explain this. (That is, why does the existence of Tn(x) follow from the identity?)
(b) Write out Tn(x) for n = 1,2,3,4,5.
(c) Show that Tn(x) is the coefficient of tn when the function 1−xt

1−2xt+t2 is expanded as a Taylor
series in t about the point t = 0, i.e.

1− xt
1−2xt + t2 =

∞

∑
n=0

Tn(x)tn.



(C5) Show that one can detect vertices of a regular n-gon in C with finitely many polynomial conditions;
that is, for any n > 3, find a set of polynomials F1,F2, . . . ,Fk in n variables such that the complex
numbers a1,a2, . . . ,an are the vertices of a regular n-gon if and only if Fi(a1, . . . ,an) = 0 for i =
1,2, . . . ,k.

(C6) Construct a sequence of analytic functions fn(z) on a domain Ω that converge pointwise to a func-
tion f (z) that is not analytic. (Note: It should be a bit surprising that this is possible.)

(C7) Give an example of an analytic function defined by a power series f (z) = ∑anzn with radius of
convergence R = 1 such that ∑an = S but limz→1 f (z) does not exist. (Compare to Abel’s theorem,
which says that f (z)→ S as z approaches 1 non-tangentially.)

(C8) Give an example of an analytic function f (z) on the open unit disk ∆ that cannot be extended
to an analytic function in a neighborhood of any point in ∂∆. More precisely, show that for any
z0 ∈ ∂∆ it is impossible to find an analytic function g(z) defined in a neighborhood U of z0 such
that g(z) = f (z) on U ∩∆.

(C9) Suppose An ∈ PSL2(C) is a sequence of Möbius transformations such that ‖An‖ → ∞ as n →

∞. (Here we use the notation ‖
(

a b
c d

)
‖ =

√
|a|2 + |b|2 + |c|2 + |d|2.) Show that there exists a

subsequence Ani and two points x,y ∈ Ĉ such that for any closed disk D that does not contain y, the
sequence of functions Ani(z) converges uniformly to the constant function x on D. (For example, if
An(z) = nz, then no subsequence is necessary, and one can take y = 0 and x = ∞.)

(C10) Fix a point p ∈ C and let Õp denote the set of pairs (U, f ) where U is an open neighborhood
of p and f is an analytic function defined on U . We say that (U, f ) and (V,g) are equivalent as
germs† if there is an open set W ⊂U ∩V such that f (z) = g(z) for all z ∈W ; in this case we write
(U, f )∼ (V,g).
(a) Show that the set of equivalence classes Op = Õp/∼ forms a ring, i.e. that pointwise addition

and multiplication of functions descend to well-defined operations on the set of equivalence
classes.

(b) Show that Op has a unique maximal ideal, and that this ideal is generated by the equivalence
class of the function f (z) = (z− p).

† An earlier version of this problem contained an error in the definition of the equivalence relation ∼.

(C11) Let f (z) be an analytic function with f ′(0) 6= 0.
(a) Show that there is a unique Möbius transformation A(z) satisfying

A(0) = f (0)

A′(0) = f ′(0)

A′′(0) = f ′′(0).

(b) Let g(z) = A−1( f (z)). Show that g(0) = 0, g′(0) = 1, and g′′(0) = 0. Calcluate g′′′(0).

(C12) Develop a Poisson integral formula for extending a piecewise continuous function on the ellipse
x2

a2 +
y2

b2 = 1 to a harmonic function on the domain x2

a2 +
y2

b2 < 1. (Use the parameterization γ(t) =
acos(t)+bsin(t).)

(C13) Let C ⊂ [0,1] denote the standard middle-third Cantor set. Suppose that f is a bounded analytic
function on Ω\C, where Ω is a region containing [0,1]. Show that f extends to an analytic function
on Ω.



(C14) Suppose A(x) is a polynomial. Show that the power series

f (z) = ∑
n>0

A(n)zn

converges on |z|< 1 to a rational function of z.

(C15) Let f be an analytic function on a region Ω with f ′(z) 6= 0 for all z ∈Ω. The Schwarzian derivative
of f is the function

S f (z) =
f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2

.

(a) The nonlinearity of f is the function N f (z) =
f ′′(z)
f ′(z) . Show that S f (z) = N f

′ (z)− 1
2 N f (z)2.

(b) Show that S f (z)≡ 0 if and only if f is the restriction of a Möbius transformation to Ω.
(c) Suppose A is a Möbius transformation. Show that SA◦ f (z) = S f (z).

(C16) Give an example (with proof) of a power series
∞

∑
n=0

anzn that converges for all |z|6 1, but where the

resulting function on the closed unit disk is not continuous.

(C17) Let Γ be a group and ρ : Γ→ PSL2C is a homomorphism. We say that ρ is discrete if the identity
element of PSL2C is an isolated point of the set ρ(Γ).

Show that if ρ : Z×Z→ PSL2C is a discrete homomorphism, then the image ρ(Z×Z) is either
a cyclic group (finite or infinite), or else ρ is injective and all of the nontrivial elements of the image
are parabolic.

(An equivalent definition of discrete homomorphism that you may use is as follows‡: For any
sequence γn such that ρ(γn) converges to the identity element of PSL2C, we have that ρ(γn) is equal
to the identity element of PSL2C for all n > N.)

‡ A mistake in this equivalent definition was corrected on April 14, 2016.

(C18) Suppose two nested circles are given, C and C′, as well as a point p on the inner circle C. As
shown below, one can form a chain of circles tangent to and lying between C and C′, starting with
a circle tangent to C at p. This chain may close up neatly, with its last circle tangent to the first
(success), however it may also end with an overlap instead of a tangency (failure). Examples of the
construction of the chain and of both possible outcomes are shown below.

(a) Show that success or failure depends only on the pair C,C′, and not on the starting point p.
(Thus there is a closed chain between them if and only if there are infinitely many distinct
chains between them.)

(b) Given centers and radii of C and C′, describe how one can determine whether the circle chain
construction will succeed, and in the case of success how many circles will be in the chain.

(C19) Consider the claim:
Given three circles C1,C2,C3 ⊂ Ĉ, there exists a unique circle D that intersects Ci orthogonally

for i = 1,2,3.



This is not quite true, but it is true for “most” triples of circles. Make this precise, prove it, and
characterize the set of orthogonal circles in all other cases. (That is, when is there no such D, and
when are there many? When D is not unique, describe all possibilities.)

(C20) Compute
∞

∑
n=1

(
e2πn +1
e2πn−1

)
1
n7 .

(C21) (a) Let A = {z | zn = n for some n ∈N}. Construct a meromorphic function on C that has a simple
pole at each point of A, and which has any given collection of complex numbers of modulus 1
as residues. (That is, given any function Q : A→ S1, construct a meromorphic function f on C
with orda f = 1 and resa f = Q(a) for all a ∈ A.)

(b) Construct an entire function that has a zero of order 2n at log(n) for all n ∈ N.

(C22) Suppose E ⊂ [0,1] is a set with positive Lebesgue measure. Show that there exists a bounded
non-constant holomorphic function on C\E.

(Note: Such a function cannot be extended holomorphically over E, since by Liouville’s theorem it
would then be constant. It is natural to compare this problem to C13 where it is shown that bounded
holomorphic functions extend over the middle-third Cantor set C. Since the Lebesgue measure of
C is zero, this is perfectly consistent.)


