
Math 320 – Linear Algebra – David Dumas – Fall 2016

Exam 1 Solutions
(1) Let S = { (1,2,−1), (3,1,0), (0,−5,3)} ⊂ R3. Consider R3 as a vector space over R.

(a) Is S linearly independent?
(b) Find a subset of S that is a basis for span(S).

Solution. (a) No, this set is linearly dependent. We have

3 · (1,2,−1)−1 · (3,1,0)+1 · (0,−5,3) = (0,0,0).

More generally, solving the system of linear equations

a · (1,2,−1)+b · (3,1,0)+ c · (0,−5,3) = (0,0,0)

gives b =−c and a = 3c, with c any scalar.
(b) Let T = {(1,2,−1),(3,1,0)}. Then by (a) we have that (0,−5,3) ∈ span(T ),

hence T generates span(S). We claim that T is linearly independent. To see this recall
that a 2-element set {u,v} is linearly independent if and only if neither of u,v is a scalar
multiple of the other. The only scalar multiple of (1,2,−1) that has third component
zero is the zero vector, whereas all scalar multiples of (3,1,0) have third component
zero. Thus neither is a scalar multiple of the other. We have therefore shown T is
linearly independent and that it generates span(S), so T is a basis for span(S).

(2) Let R[x]2 denote the vector space of polynomials of degree at most 2 with real coeffi-
cients, which is a vector space over R. Let T : R[x]2→R3 be the linear transformation
defined by

T (p) = (p(1), p(2), p(3)).

(a) Find a basis of the null space of T .
(b) Find a basis of the range of T .

Solution. There are several ways to do this problem. One convenient approach is to re-
call the Lagrange interpolation theorem, which gives a basis {p1, p2, p3} of R[x]2 such
that T (p1)= (1,0,0), T (p2)= (0,1,0) and T (p3)= (0,0,1). Since {(1,0,0),(0,1,0),(0,0,1)}
generates R3, this shows that the range of T is R3, and rank(T ) = 3. By the dimension
theorem, nullity(T ) = 3−3 = 0, and we conclude N(T ) = {0}. Thus:

(a) The empty set is a basis for the zero vector space N(T ) = {0}.
(b) The standard basis {(1,0,0),(0,1,0),(0,0,1)} is a basis for R(T ) = R3.

(3) Let V = (Z/2)4, a vector space over the field Z/2.
(a) How many elements does V have?
(b) Let W ⊂V be the set of all vectors that have an even number of entries equal to 1.

Show that W is a subspace of V and find a generating set for W .



Solution. (a) Since Z/2 has 2 elements, the Cartesian product (Z/2)4 has 24 = 16
elements.

(b) The problem can be approached directly by considering sums and scalar multiples
and dividing into several cases (depending on how many entries of the vectors are
nonzero).

An easier way is to notice that (a,b,c,d) ∈ W if and only if a + b + c + d = 0.
To prove this, first suppose (a,b,c,d) ∈W . Then the sum a+ b+ c+ d has an even
number of terms equal to 1, and grouping them in pairs and using 1+1 = 0 we find that
a+b+c+d = 0. Now suppose (a,b,c,d) 6∈W . Then the sum a+b+c+d has an odd
number of terms equal to 1, say 2k+1 of them. We can separate the sum into its zero
terms, k pairs (1+1), and a single 1. Using 1+1 = 0 on the pairs, we find the sum is
equal to 1. Contrapositively we conclude that if a+b+ c+d = 0 then (a,b,c,d) ∈W .

Using this characterization, we find that the set W a subspace because a scalar mul-
tiple of a vector (a,b,c,d) satisfying a+b+ c+d = 0 also satisfies that equation, and
similarly for a sum of two vectors satisfying the equation.

(An equivalent way to explain the proof above would be: Define T : (Z/2)4→ Z/2
by T (a,b,c,d) = a+b+c+d. This is a linear transformation, and W is its null space.)

Finally, for a generating set we could take the entire subspace W . (The problem did
not ask for a finite generating set or for a basis, though in this case, it happens that W
is a finite set anyway.) With a bit more work, one could also show that W is generated
by the three vectors

{(1,1,0,0),(0,1,1,0),(0,0,1,1)}

which form a basis.

(4) Suppose V is a vector space and W1 and W2 are subspaces of V . Let U be the set of all
vectors in V that can be written as a sum of a vector in W1 and a vector in W2. That is,

U = {w1 +w2 |w1 ∈W1,w2 ∈W2}

Show that U is a subspace of V .

Solution. (a) Suppose that u ∈U and c ∈ F. Then we can write u = w1 +w2 for some
w1 ∈W1 and w2 ∈W2. Therefore

cu = c(w1 +w2) = cw1 + cw2.

Since W1 is a subspace, we have cw1 ∈W1. Similarly cw2 ∈W2. This shows cu is the
sum of a vector in W1 and a vector in W2, hence cu ∈U .

Suppose that u,u′ ∈ U . Write u = w1 +w2 as above, and u′ = w′1 +w′2 for some
w′1 ∈W1 and w′2 ∈W2. Then

u+u′ = (w1 +w2)+(w′1 +w′2) = (w1 +w′1)+(w2 +w′2)

Since W1 is a subspace, we have w1 +w′1 ∈W1. Similarly w2 +w′2 ∈W2. This shows
u+u′ is the sum of a vector in W1 and a vector in W2, hence u+u′ ∈U .



We have shown that U is closed under scalar multiplication and under vector addi-
tion, hence it is a subspace of V .

(5) A square matrix A is called antisymmetric if AT = −A. Show that the set of antisym-
metric matrices is a subspace of M3×3(R) and find a basis for this subspace.

Solution. The transpose of a matrix satisfies (A+B)T = AT +BT and (cA)T = c(AT ).
Hence if A,B ∈M3×3(R) are antisymmetric, and c ∈ R, we have

(A+B)T = AT +BT =−A−B =−(A+B)

and
(cA)T = c(AT ) = c(−A) =−(cA).

That is, A+B and cA are also antisymmetric. This shows that the set of antisymmetric
matrices is closed under scalar multiplication and under vector addition, hence it is a
subspace of M3×3(R).

In what follows, let us denote the subspace of M3×3(R) consisting of antisymmetric
matrices by W .

Let

S =


 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

We claim that S is a basis for W . First, we show S is linearly independent: If we
consider a linear combination of elements of S,

a

 0 1 0
−1 0 0
0 0 0

+b

 0 0 1
0 0 0
−1 0 0

+ c

0 0 0
0 0 1
0 −1 0

=

 0 a b
−a 0 c
−b −c 0


then if this linear combination is equal to the zero matrix, by comparing the (1,2),
(1,3), and (2,3) entries we find a = b = c = 0. Thus S is linearly independent.

Next we show that S spans W . Consider a 3×3 matrix A, and denote its entries bya b c
d e f
g h i

 .

If A ∈W then AT =−A and we havea d g
b e h
c f i

=

−a −b −c
−d −e − f
−g −h −i

 .

Comparing diagonal entries gives a = −a, e = −e, and i = −i. Hence a = e = i = 0.
Comparing off-diagonal entries we find that d =−b, g =−c, and h =− f . Thus A∈W



can be written as 0 b c
−b 0 f
−c − f 0

= b

 0 1 0
−1 0 0
0 0 0

+ c

 0 0 1
0 0 0
−1 0 0

+ f

0 0 0
0 0 1
0 −1 0


which shows that A is a linear combination of elements of S. Hence S spans W .

We have shown S is a linearly independent set that generates W , therefore S is a basis
of W .


