
Math 445 – David Dumas – Fall 2015

Midterm Exam Solutions
(1) (a) [2 points] Write the definition of continuity for a function f : X → Y , where X and

Y are topological spaces.

(b) [2 points] Write the definition of ε-δ continuity for a function f : X → Y , where
(X ,dX) and (Y,dY ) are metric spaces.

(c) [6 points] Show that the topological and ε-δ definitions of continuity are equivalent
for maps between metric spaces.

Solution. A function f : X → Y is called continuous if for every open set V ⊂ Y , the
set f−1(V ) is open.

A function f : X→Y , where (X ,dX) and (Y,dY ) are metric spaces, is ε-δ continuous
if for every ε > 0 and every x ∈ X there exists δ > 0 such that dY ( f (x), f (x′))< ε for
all x′ ∈ X with dX(x,x′)< δ .

For a proof of the equivalence of these definitions when X and Y are metric spaces,
see Theorem 21.1 in Munkres.

(2) [10 points] Show that a topological space is T1 if and only if every finite set is closed.

(Recall that a topological space X is said to be T1 if for every x,y ∈ X with x 6= y there
exists an open set U such that x ∈U and y 6∈U .)

Solution. Suppose X is T1, and let y ∈ X . The set X \ {y} is open because it con-
tains a neighborhood of each of its points: For any x ∈ X \ {y} the T1 axiom gives a
neighborhood U of x that does not contain y, or equivalently, so that U ⊂ X \{y}.

Since X \{y} is open, the singleton set {y} is closed. Finite unions of closed sets are
closed, hence every finite subset of X is closed.

Conversely, suppose every finite set in X is closed. Given x,y ∈ X with x 6= y, let
U = X \{y}. Since {y} is closed, U is open. Since x ∈U and y 6∈U , this shows that X
is T1.

(3) [10 points] Let X be a topological space and ∼ an equivalence relation on X. Suppose
X/∼ is connected and that each equivalence class of ∼ is connected. Show that X is
connected.

Solution. Let π : X → X/∼ denote the quotient map associated to ∼. Suppose for
contradiction that X = A∪B is a separation of X .

First suppose that there is an equivalence class C of ∼ that intersects both A and B
non trivially. Then C = (A∩C)∪ (B∩C) is a separation of C, which is connected by
hypothesis, giving a contradiction.



If every equivalence class of ∼ is contained in either A or B, then π(A) and π(B) are
disjoint and cover X/∼. Furthermore π(A) and π(B) are open, since A and B are open
and each is a union of equivalence classes. Thus X/∼= π(A)∪π(B) is a separation of
X/∼, which is connected by hypothesis, giving a contradiction.

(4) Consider the set R with the finite-complement topology. (This is the topology in which
the nonempty open sets are exactly the sets with finite complement.) Answer each of
the following questions about this topological space, and give a proof of each answer.

(a) [2 1
2 points] Is it Hausdorff?

(b) [2 1
2 points] Is it connected?

(c) [2 1
2 points] Is it path-connected?

(d) [2 1
2 points] Is it compact?

Solution. Let X denote the topological space that is R equipped with the finite com-
plement topology. We claim that X is connected, path-connected, and compact but not
Hausdorff. That is, the answers are:
(a) No
(b) Yes
(c) Yes
(d) Yes

To prove this, first notice that R is infinite, so any two nonempty open sets in X have
nontrivial intersection. Since the Hausdorff condition requires the existence of disjoint
pairs of nonempty open sets, it follows that X is not Hausdorff.

To see that X is compact, consider an open cover A . Choose A0 ∈A , which is open
and hence R\A0 = {x1, . . . ,xn} is finite. For each i with 1≤ i≤ n, let Ai ∈A be a set
from the cover such that xi ∈ Ai. Then {A0,A1, . . . ,An} is a finite subcover of A .

Finally we consider (path-)connectedness. Let a,b ∈ X . Let [a,b] denote the associ-
ated closed interval in R with the standard topology. The inclusion map [a,b] ↪→ X is
continuous because the finite complement topology is coarser than the standard topol-
ogy, and thus this inclusion gives a path from a to b in X . We have therefore shown that
X is path-connected, and any path-connected space is connected.

(5) [10 points] Let X be an ordered set. Show that the order topology on X is Hausdorff.

Solution. Let x,y ∈ X , with x 6= y. Renaming the points if necessary, we can assume
x < y. We seek disjoint neighborhoods of x and y.

If the open interval (x,y) is empty, then U = (−∞,y) and V = (x,∞) are disjoint,
open in the order topology, x ∈U , and y ∈V .

Otherwise let z ∈ (x,y). Then U = (−∞,z) and V = (z,∞) are disjoint, open in the
order topology, x ∈U , and y ∈V .

Therefore, the order topology on X is Hausdorff.


