Math 445 – David Dumas – Fall 2015

Solution to Problem 1, Homework 4

- (P1) Suppose X is a set and $\mathscr{T}, \mathscr{T}'$ are topologies on X. In each part of this problem, determine whether or not the given condition implies that $\mathscr{T} = \mathscr{T}'$. If so, give a proof. If not, give a counterexample and prove that it is a counterexample.
 - (a) For every finite topological space W, a function $f: W \to X$ is continuous with respect to \mathscr{T} if and only if it is continuous with respect to \mathscr{T}' .

Solution: This condition does **not** necessarily imply that $\mathscr{T} = \mathscr{T}'$.

For example, consider \mathbb{R} with the standard topology (\mathscr{T}) and with the finite complement topology (\mathscr{T}') . Both of these topologies on \mathbb{R} induce the discrete topology on any finite subspace of \mathbb{R} , and in particular they give the same subspace topology on f(W) whenever $f: W \to \mathbb{R}$ is a function and W is finite. Since the continuity of a function $f: W \to \mathbb{R}$ is equivalent to continuity of the associated function $f: W \to f(W)$, where $f(W) \subset \mathbb{R}$ is given the subspace topology, this shows that $f: W \to \mathbb{R}$, with W finite, is continuous for \mathscr{T} if and only if it is continuous for \mathscr{T}' .

(b) For every finite topological space *Y*, a function $f: X \to Y$ is continuous with respect to \mathscr{T} if and only if it is continuous with respect to \mathscr{T}' .

Solution: This condition implies that $\mathscr{T} = \mathscr{T}'$. In fact, it suffices to consider a single space: If $Y = \{0, 1\}$ with the topology $\{\emptyset, \{1\}, \{0, 1\}\}$, then the indicator function $\chi_A : X \to Y$ of a subset $A \subset X$ is continuous if and only if A is open.

(c) For every Hausdorff topological space *Y*, a function $f: X \to Y$ is continuous with respect to \mathscr{T} if and only if it is continuous with respect to \mathscr{T}' .

Solution: This condition does **not** necessarily imply that $\mathcal{T} = \mathcal{T}'$.

For example, consider $X = \{0, 1\}$ with $\mathscr{T} = \{\emptyset, \{1\}, \{0, 1\}\}$ and $\mathscr{T}' = \{\emptyset, \{0\}, \{0, 1\}\}$. These topologies are distinct, but in both cases constant functions are the only continuous functions from X to a Hausdorff topological space. To see this, suppose on the contrary that $f : X \to Y$ is continuous and not constant, with Y Hausdorff. Choose $y, y' \in f(X)$ with $y \neq y'$. Then y and y' have disjoint open neighborhoods U, U'. Thus $f^{-1}(U)$ and $f^{-1}(U')$ are disjoint, open, and nonempty subset of X. But neither \mathscr{T} nor \mathscr{T}' has a pair of disjoint nonempty open sets, so this is a contradiction.