Math 445 – David Dumas – Fall 2015

Homework 5

Due Wednesday, September 30 at 1:00pm

Instructions:

- To receive full credit, a solution must be clear, concise, and correct.
- Problems marked with * are *extra credit problems* and these are *optional*.
- (—) From the textbook: 20.6, 20.11, 22.2, 22.3, 22.4
- (P1) * Let us say that a function $f: X \to Y$ between topological spaces is *sequentially continuous* if $f(x_n) \to f(x)$ whenever $x_n \to x$. Give an example of a function that is sequentially continuous but not continuous. (Include a proof of your claims, not just a description of f, X, and Y.)
- (P2) * A sequence x_n is called *eventually constant* if there exist N and x such that $x_n = x$ for all $n \ge N$. Give an example of a topological space in which no singleton set is open, but where a sequence converges if and only if it is eventually constant. (As a warm-up, you should convince yourself that the problem is much easier if open singleton sets are allowed.)
- (P3) * Suppose that (X,d) is a metric space and $f: X \to X$ is a function such that $d(f(x), f(y)) \le d(x,y)$ for all $x, y \in X$. Show that f is continuous.
- (P4) * If (X,d) is a metric space, show that $d: X \times X \to \mathbb{R}$ is continuous, where $X \times X$ has the product of metric topologies and \mathbb{R} has the standard topology.
- (P5) * Let ~ denote the equivalence relation on $\mathbb{R} \times \{0,1\}$ generated by $(x,0) \sim (\frac{1}{x},1)$ for all $x \neq 0$. Show that the quotient topology on $(\mathbb{R} \times \{0,1\})/\sim$ is homeomorphic to S^1 (the unit circle in the plane with the subspace topology).