Math 445 – David Dumas – Fall 2015

Homework 2

Due Wednesday, September 9 at 1:00pm

Instructions:

- Problems from the textbook (Munkres, 2ed) are specified in the format "Section.Exercise".
- When writing your solutions, clearly label each one with the problem number. Use the same numbering as in the homework sheet (i.e. 13.8, P2, etc.)
- To receive full credit, a solution must be clear, concise, and correct.

Note: When a problem asks a question with a "yes" or "no" answer, you are expected to provide a proof of whatever answer you give!

- (—) From the textbook: 13.8, 16.2, 16.3, 16.8, 16.9, 17.1, 17.3, 17.5
- (P1) The rationals \mathbb{Q} are a subset of the ordered set of real numbers \mathbb{R} . Is the subspace topology on \mathbb{Q} the same as its order topology?
- (P2) Can you realize the dictionary order topology of $X = \{1,2\} \times \mathbb{Z}^+$ as the subspace topology of some subset of \mathbb{R} ? That is, can you find a set $Y \subset \mathbb{R}$ and a bijection $f: X \to Y$ such that $U \subset X$ is open in the dictionary order topology if and only if $f(U) \subset Y$ is open in the subspace topology?
- (P3) Let X be a topological space, $\mathscr{P}(X)$ the power set of X, and $Cl : \mathscr{P}(X) \to \mathscr{P}(X)$ the "closure operator" defined by $Cl(A) = \overline{A}$. Show that the map C has the following properties. (Some of these will be very easy to prove!)
 - (a) $Cl(\emptyset) = \emptyset$ (b) $Cl(A \cup B) = Cl(A) \cup Cl(B)$ for all $A, B \in \mathscr{P}(X)$ (c) Cl(Cl(A)) = Cl(A) for all $A \in \mathscr{P}(X)$ (d) $A \subset Cl(A)$ for all $A \in \mathscr{P}(X)$
- (P4) Let X be a set, and let $Cl : \mathscr{P}(X) \to \mathscr{P}(X)$ be a map that has properties (a)-(d) listed in the previous problem. Define

$$\mathscr{T} = \{ U \in \mathscr{P}(X) \, | \, Cl(X \setminus U) = X \setminus U \}.$$

Show that \mathscr{T} is a topology on X and that Cl is the closure operator of this topology.