Math 445 – David Dumas – Fall 2015

Homework 10

Due Monday, November 16 at 1:00pm

Instructions:

- To receive full credit, a solution must be clear, concise, and correct.
- Unlike the other recent assignments, this one does **not** have any optional problems.
- (—) From the textbook: 33.3, 34.3
- (P1) Prove "Fact 4" from Clark's notes on Tychonoff's theorem, i.e.: Let $X = \prod_{\alpha \in J} X_{\alpha}$ be a product of topological spaces, with the product topology, and denote by $\pi_{\alpha} : X \to X_{\alpha}$ the projection onto a factor. Let \mathscr{F} be a filter on X and $p \in X$. Show $\mathscr{F} \to p$ if and only if for all $\alpha \in J$ we have $\pi_{\alpha}(\mathscr{F}) \to \pi_{\alpha}(p)$.

(Even if we sketched a proof in lecture, you should fill in the details.)

(P2) Let *X* be an infinite set. For each $p \in X$ there is a filter

$$\mu_p = \{A \subset X \mid p \in A\}$$

Any filter of this form is called *principal*. Another filter on X is the *finite complement filter*,

$$\mu_{\infty} = \{ A \subset X \mid X \setminus A \text{ is finite} \}.$$

- (a) Show that every principal filter μ_p is an ultrafilter.
- (b) Show that μ_{∞} is not an ultrafilter.
- (c) Show that every non-principal ultrafilter contains μ_{∞} .
- (P3) Show that a topological space X is Hausdorff if and only if every ultrafilter \mathscr{F} on X converges to at most one point.
- (P4) Let ω be a non-principal ultrafilter on \mathbb{N} . Let $(x_1, x_2, ...)$ be a bounded sequence of real numbers.
 - (a) Show that there exists a unique real number *a* such that for every $\varepsilon > 0$,

$$[n | |a-x_n| < \varepsilon\} \in \omega.$$

(b) The real number a from (a) is called the ω -limit of the sequence x_n , denoted

$$a = \lim_{\omega} x_n.$$

Show that if the sequence x_n converges in the usual sense, then it converges to its ω -limit. That is,

$$\lim_{n\to\infty}x_n=\lim_{\omega}x_n$$

if the left-hand side exists.

(c) Show that

$$\liminf_{n\to\infty} x_n \leqslant \limsup_{\omega} x_n \leqslant \limsup_{n\to\infty} x_n$$

(d) Show that if y_n is another bounded sequence, and if $c \in \mathbb{R}$, then

$$\lim_{\omega} cx_n = c \lim_{\omega} x_n$$

and

$$\lim_{\omega} (x_n + y_n) = \lim_{\omega} x_n + \lim_{\omega} y_n.$$

This problem shows that the choice of a non-principal ultrafilter on \mathbb{N} gives a way to consistently assign a "limit" to every bounded sequence of real numbers.