
MCS 481 / David Dumas / Spring 2014

Project 2: Polygons

Due Friday, March 7

0. Overview

For this project you have two options:

• Implement polygon triangulation and a set of test cases.
• Go “off the rails” and propose your own experimental or coding project.

The options are described in more detail below.

1. Coding option - Polygon Triangulation

Problem specification. Implement a O(n log(n)) algorithm to triangulate a simple
polygon without holes. For example, you could implement the plane sweep to decompose
an arbitrary simple polygon into monotone pieces, followed by a stack-based algorithm
to triangulate each piece. For the second step you might use the direct approach in the
text or the variation involving a decomposition into “mountains” that was presented in
lecture.

As part of the implementation you are expected to test your program on various poly-
gons and examine the output. You should think about a convenient way to generate test
cases and also how to visualize the triangulations produced by your program. You might
also wish to compare your program to one that uses CGAL to produce a triangulation
(see below).

You are also required to submit test cases with your code, and the quality of the tests
(and your program’s correctness when applied to them) will be considered as part of
your project evaluation.

The evaluation of your project will also involve automated testing of your code.
Therefore, it is very important to conform to the following input and output format
specifications.

Input. Your program will read a list of points from standard input (stdin). Each
line of input will contain the coordinates x y of one point, separated by whitespace
characters (e.g. space, tab). The points will be the vertices of a simple polygon P in
counterclockwise order. The first vertex in the list will have the largest y coordinate
and will be leftmost among such vertices in case of a tie. For example, the following
input describes a square inscribed in the unit circle:

0 1

-1 0

0 -1

1 0

The list of vertices may be followed by any number of blank lines or lines containing
only whitespace characters, which your program must ignore.

Project description v1.0 (February 12, 2014)

2

Output. Write a list of triangles to standard output (stdout), one per line, defining a
triangulation of P . A triangle is described by three integers, representing the zero-based
indices of its vertices in the input list. On each line of output, the triangle vertices will
appear in counterclockwise order. For example, the following represents one possible
triangulation of the polygon described above:

0 1 2

0 2 3

In this sample output, the first line describes the triangle with vertices (0, 1), (−1, 0),
and (0,−1).

Reference implementation. A C++ program that uses CGAL to triangulate a poly-
gon and print the result in the format described above is included with this project
description. (See code listings at the end of this document.)

Keep in mind that you need to create your own triangulation program from scratch,
and may not use CGAL in your project. This sample program is included in the hope
that it will clarify the desired input and output format and because it might be useful
for testing purposes.

Implementation advice. The textbook assumes that the input polygon is represented
by a doubly-connected edge list (DCEL), but implementing a full DCEL is not necessary
for this assignment. Instead of maintaining a separate vertex structure, you can build
the coordinates of the origin into each half-edge record. A face structure is not needed
at all. At the last step you can find cycles of half-edges and print the results.

Language choice. The same programming language policies apply as in Project 1.
Contact me for approval if necessary.

Built-in functions and libraries. Your code may not use any built-in computational
geometry functions.

Your code may use built-in data structures such as arrays, linked lists, hashes, search
trees, stacks, or queues, if such structures are provided by the language or CAS you
choose. If you want to use a library that implements any of these basic data structures,
contact me for approval.

What to submit. Write a report on your implementation process. Start by briefly
describing the triangulation problem and the algorithm. Then focus on the design
decisions that were involved in your implementation.

Create test cases for your code that demonstrate its correctness for various types of
input (a convex polygon, a monotone polygon, a polygon requiring several monotone
pieces, etc.). Display these test polygons and the triangulations produced by your
program in the report.

Submit the report, source code, and test cases by email (ddumas@math.uic.edu), fol-
lowing the standards for coding option and source code submissions from the description
of Project 1.

3

2. Off the rails

For this option you will design your own coding or experimental project and email me a
proposal (ddumas@math.uic.edu). Your proposal should be a few paragraphs in length,
roughly similar to the kind of description given above for the polygon triangulation
coding option. Your description must indicate:

• What final products you will submit for evaluation
• What references you will use (to show you have some idea where to start)
• What algorithms you will implement (if coding) or study (if doing experiments)

Furthermore, if choosing an experimental option, indicate what implementation(s) you
will study and what questions you intend to answer about them.

The proposal is due by Wednesday, Feb 19. I will read your proposal and either
approve it or suggest some changes. I will also indicate how your project would be
evaluated. Once you receive approval and are satisfied with the proposed evaluation
standards, you can begin working.

Example. For an experimental project you might choose to study the convex decom-
position algorithms in CGAL by applying them to random polygons. You could use
the CGAL documentation, source code, and the research papers cited therein as your
primary references. Your final product could be a report describing timing studies and
comparison of all three convex decomposition methods applied to several classes of poly-
gons:

• Random n-gons
• Monotone n-gons
• n-gons in which the number of concave vertices is Ω(n)

Goals for such a project might include:

• Explore the claims in the CGAL documentation claims about which “approxi-
mately optimal” method is likely to produce fewer convex pieces

• Study whether the running time behaves as claimed (e.g. O(n4) for the optimal
decomposition) and whether it appears to be sensitive to the number of concave
vertices.

4

3. Code listings

3.1. Triangulation using CGAL. This program reads vertices a simple polygon from
standard input and writes a triangulation of the polygon to standard output. The input
and output formats are as described in section 1.

// triangulate.cpp

// MCS 481 Spring 2014 project 2 description version 1.0

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>

#include <CGAL/Constrained_Delaunay_triangulation_2.h>

#include <CGAL/Partition_traits_2.h>

#include <CGAL/partition_2.h>

#include <CGAL/centroid.h>

#include <cassert >

#include <iostream >

#include <list >

typedef CGAL:: Exact_predicates_exact_constructions_kernel K;

typedef CGAL:: Triangulation_vertex_base_2 <K> Vb;

typedef CGAL:: Constrained_triangulation_face_base_2 <K> Fb;

typedef CGAL:: Triangulation_data_structure_2 <Vb,Fb> TDS;

typedef CGAL:: Exact_predicates_tag Itag;

typedef CGAL:: Constrained_Delaunay_triangulation_2 <K, TDS , Itag > CT;

typedef CGAL:: Partition_traits_2 <K> Traits;

typedef CT:: Point Point;

typedef CGAL:: Triangle_2 <K> Triangle;

typedef Traits :: Polygon_2 Polygon;

typedef Polygon :: Edge_const_iterator EdgeIterator;

int

main()

{

Polygon pgn;

// Read vertex list from stdin and construct polygon

Point p;

while (std::cin >> p) {

pgn.push_back(p);

}

// We ask CGAL to triangulate the entire plane so that each edge of

// P is one of the edges of this triangulation (these are the

// "constraints ").

CT ct;

EdgeIterator ei;

for (ei = pgn.edges_begin (); ei != pgn.edges_end (); ei++) {

ct.insert_constraint((*ei). source(), (*ei). target ());

}

assert(ct.is_valid ());

// The CT object maintains a triangulation of the plane at all

// times , adapting as needed it every time we add a constraint. So

// after the loop above , it includes a plane triangulation with P

5

// among its edges.

// Now we determine which triangles actually lie inside P and print

// them.

CT:: Finite_faces_iterator fi;

for (fi = ct.finite_faces_begin (); fi != ct.finite_faces_end (); fi++) {

Triangle t = ct.triangle(fi);

Point m = CGAL:: centroid(t);

if (pgn.bounded_side(m) == CGAL:: ON_BOUNDED_SIDE) {

// Current triangle is inside P, print it

for (int i=0; i<3; i++) {

std::cout << std:: distance(pgn.vertices_begin (),

std::find(pgn.vertices_begin (),

pgn.vertices_end (),

t.vertex(i)));

if (i==2)

std::cout << std::endl;

else

std::cout << " ";

}

}

}

return 0;

}

