
MCS 481 / David Dumas / Spring 2014

Project 1: Convex hulls and line segment intersection

Due at 10am on Monday, February 10

0. Prerequisites

For this project it is expected that you already have CGAL and a compatible C++
build environment.

For some experiments you will need the ability to accurately measure the running
time of programs. If you do not know how to do this, ask.

1. Project overview

The project has two parts, convex hull and line segment intersection. For each part
you can choose either an experimental option in which you will work with CGAL and
its example programs, or a coding option involving the implementation of an algorithm
in a computer programming language. (It is acceptable to choose the coding option for
one part and the experimental option for the other.)

If you choose an experimental option, you will be reading, understanding, modifying,
and testing some C++ programs. It will not be necessary to write any new programs
from scratch.

If you choose a coding option you may use any approved programming language. The
following languages (and versions) are pre-approved:

C C++ Go(1.2) Java(OpenJDK7.u45) Perl(5.x) Python(2.7,3.4)

Contact me for approval if you want to use another language. Your code must not
use any computational geometry functions from built-in or add-on libraries. That is,
you must implement all of the geometric primitives that your project requires. You
may use built-in support for basic data structures and related operations (lists, sorting
algorithms, etc.).

You may also choose the coding option and write your program in a computer algebra
system (CAS) such as Sage, Mathematica, Matlab, or Maple, but if you intend to pursue
this option contact me for details and approval.

A bit of advice:

• If you have limited programming experience, think carefully before choosing a
coding option. With the experimental option, you start with a working program
and analyze it, whereas in the coding option you need to write and debug your
own program.

• Decide which options you intend to complete as soon as possible.
• A key component of the experimental option will be answering the question:
How can you distinguish between growth rates O(n) and O(n log n) using a col-
lection of function values?

Project description v1.0(January 17, 2014)

2. Convex Hull

Experimental option. Test one of the convex hull algorithms available in CGAL for
four classes of input data:

(1) n random points inside the unit square
(2) n random points inside the unit disk
(3) n random points on the unit circle
(4) n random points on the line segment between (0, 0) and (1.0, 0.367879441171442321).

In each case, measure the running time for various values of n and report the results (as
a table or graph). Use a range of values so that running times vary from less than 0.05
seconds to more than 10 seconds. Do you see n log n asymptotics? (Can you tell the
difference between that and linear growth?) Is the running time sensitive to the type of
input? If so, why?

You can use the example program ch_from_cin_to_cout from CGAL for these ex-
periments. This program is located in the examples/Convex_hull_2 subdirectory of the
source distribution. (The example programs may be located elsewhere if you installed
CGAL as a binary package rather than compiling from source.) This program reads a
list of coordinates from standard input, formatted like this:

1.2 3.4

5.6 7.8

-2.2 0.1

0.5 0.9

Thus, for example, in a linux terminal the command

./ch_from_cin_to_cout < input.txt > output.txt

reads points from input.txt and writes the convex hull vertices to output.txt, and

time ./ch_from_cin_to_cout < input.txt > output.txt

will do the same but also report the amount of time used by the program.

Since a suitable program for computing convex hulls is included with CGAL, one of the
key tasks in this part of the project is to create input files containing n points arranged
according to rules (1)–(4) above, for several values of n. Of course this should also be
done by a computer program. For case (1) such a “generator” program is included with
this project description (see the source code listings at the end of this document). For
the other cases, you should read through the generator program and figure out how to
modify it appropriately.

Note: If you prefer, you can automate these experiments by writing a single C++
program that generates the input points, calls CGAL functions to compute the hull,
reports the running times. Alternatively, you could write a script (in the shell or with
an auxiliary programming language) to automate the execution of the CGAL example
program and collection of running time data. However, the total number of runs is
expected to be small enough so that it is possible to collect the data in a reasonable
amount of time even without any automation.

Coding option. Implement a convex hull algorithm that has running time O(n log n) or
O(nh), where n is the number of input points and h is the number of convex hull vertices.
You should probably choose either Graham’s scan, the Graham-Andrew variation from
the textbook, or the Jarvis march from problem 1.7. (A naive algorithm that checks all
pairs of points will be accepted for partial credit.)

Write your code “from scratch”, that is, do not base it on an existing implementation.
Test your implementation on several small non-degenerate datasets (e.g. two points,
three non-collinear points, five points on the unit circle, ...) and verify the correctness of
the output. Analyze the robustness of your algorithm by testing on several degenerate
cases (e.g. points that lie on a single vertical line, points on a non-vertical line, 10 points
on the edges of a triangle).

Your program should have the same input and output specifications as the CGAL
example program ch_from_cin_to_cout. That is, your program must accept a list of
points (one per line with x and y coordinates separated by one or more spaces) on
standard input, compute the convex hull, and print a list of convex hull vertices to
standard output. (If using a CAS like Sage, it is acceptable to instead read the input
from a text file with a fixed name, and to write the convex hull to another text file.)

3. Line segment intersection

Experimental option. Study the CGAL implementation of the plane sweep segment
intersection algorithm. Experiment with each of the following classes of input:

(1) n segments defined by 2n random points on the unit circle
(2) n random diameters of the unit circle (so all segments intersect at the origin,

and nowhere else)
(3) n random diameters of the unit circle shifted by random vectors of a fixed, small

length (maybe 0.000001)
(4) n segments that form a polygon with n sides

In each case, study a number of values of n and record both the running time and
the total number of intersections I. Analyze the results and attempt to determine:

• For which classes of input do you observe O((n + I) log n) asymptotics?
• For each class, how does I behave as a function of n?

As part of your analysis, try to figure out why these types of input segments were
selected for the project. What special feature does each one have? How might they test
different performance characteristics of the algorithm?

The CGAL example program sweep_line.cpp (located in examples/Arrangement_2/

or examples/Arrangement_on_surface_2/ depending on CGAL version) computes all
intersections between a sample collection of segments and prints the results. The dataset
is fixed in the source code, and a rational number library is used for exact arithmetic.
With minor modifications this example can be adapted to the experiments described
above, i.e. to read a list of segments from standard input, find their intersections using
floating-point arithmetic, and print the number and location of intersection points to
standard output. See the source code listing at the end of this document for details.

As with the experimental option for convex hulls, generating the input points is an
important part of this task. A good place to start would be modifying the sample
program (included with this project description) that generates random points in the
unit disk.

Coding option. Implement an algorithm for reporting all intersection points for a set
of n segments S and listing the segments containing each intersection point. You can
use any algorithm you like, e.g. check all pairs of segments, record which pairs intersect
and where, and then sort the results by intersection point in order to give the desired
output. Keep in mind that you will first need to implement the geometric primitive for
intersecting two line segments.

Test your algorithm on several small configurations where you can compute the correct
output by hand (e.g. segments with one common endpoint, disjoint segments, several
vertical segments intersecting one horizontal segment, etc.). Verify that the output
is correct in these cases. Also test the robustness of your algorithm for some types
of degenerate input (e.g. all segments contained in a line, or several disjoint parallel
segments).

Your program should have the same input and output specifications as the example
program sweep-line-cin included with this project description. That is, your program
must accept a list of segments (one per line, in the format x1y1x2y2) on standard input,
compute their intersections, and print a list of intersection points to standard output.
(If using a CAS like Sage, it is acceptable to instead read the input from a text file with
a fixed name, and to write the convex hull to another text file.)

4. How to submit your project

— READ THIS SECTION CAREFULLY BEFORE YOU SUBMIT —

Email submission (ddumas@math.uic.edu) is required for source code and preferred
for all materials.

For an experimental option, you must submit:

• A report (PDF or plain text) with:
– Table or graph of running time data
– Interpretation of the results (answer questions from the description above)

• An archive (.tar.gz or .zip by email) of:
– Source code for all programs you wrote or modified for these experiments

• A statement to the effect that you are the sole author of all of the materials you
are submitting

For a coding option, you must submit:

• A report (PDF or plain text) with:
– A description of the algorithm you use, including pseudocode
– A brief discussion of how you implemented the algorithm
– Test cases (input and output) that you used to check the correctness of your

implementation
• An archive (.tar.gz or .zip by email) of:

– Source code of your implementation
– Input files for the test cases

• A statement to the effect that you are the sole author of all of the materials you
are submitting

Requirements for all source code submissions:

• For each source file that you write, one of the first five lines must be a comment
of the following form (adapted to the comment syntax of the language you use):

// MCS 481 Project 1, Spring 2014, by NAME

• Each source file that you modify from the CGAL examples or the code included
with this project description should have:

– A descriptive file name.
For example, if you modify rand-disk-points.cpp so that it produces

random points on the circle, you should change the name to something like
rand-circle-points.cpp

– A comment on one of the first five lines indicating that you modified it, e.g.

// CGAL example modified for MCS 481 Project 1, Spring 2014, by NAME

5. Extra credit opportunities

You should focus on completion of the required tasks described above, but a modest
amount of extra credit may be awarded for including any of the following:

• Completion of the convex hull experimental option for at least two different con-
vex hull algorithms that CGAL offers, with comparative analysis of the results.

• Mathematical analysis of the expected number of convex hull vertices for ran-
dom input of types (1) and (2), i.e. random points in the square or disk.

• Thorough experimental analysis of the distribution (histogram) of numbers of
convex hull vertices for random input of types (1) and (2).

• When choosing a coding option, automating testing of your program by feeding
the same input to it and to a corresponding program that uses CGAL, then
comparing the results.

Finally, for experienced programmers I offer the option to take on a bigger coding
challenge but focus on just one of the two geometric problems (convex hull or segment
intersection). You can think of this as getting full credit for the assignment by doing
half of it “the hard way”.

In this case I will consider your project complete if you implement either one of these
more advanced algorithms (and submit the usual report and test cases, etc.):

• Chan’s O(n log h) convex hull algorithm
• The O((n + I) log n) plane sweep line intersection algorithm (complete with a

log-time priority queue implementation you built from scratch)

This option could be a fun challenge, but the risk of failure is much greater, so think
carefully about what you want to do.

6. Code listings

6.1. Random points in the unit disk. The program below prints a list of 50 random
points in the unit disk.

// rand -disk -points.cpp

// MCS 481 project 1 description version 1.0

#include <cstdlib >

#include <ctime >

#include <cmath >

#include <iostream >

using namespace std;

double dblrand () // return pseudorandom double in [0.0 ,1.0).

{

return rand ()/(double(RAND_MAX) + 1);

}

int main()

{

srand ((unsigned)time (0)); // Seed the random generator with current time

// WARNING: If you run this program twice within

// one second , it will produce the same output!

const int numpoints = 50;

for (int i=0; i<numpoints; i++) {

// Generate points in the square [-1,1)x[-1,1) until we find one

// that lies in the unit disk.

// This is not an efficient algorithm (it has infinite worst -case

// running time!) but we use it because the code is particularly

// simple and efficiency of this component is not a focus of the

// project.

double x,y;

do {

x = 2.0* dblrand () - 1.0; // rescale to get random number in [-1,1)

y = 2.0* dblrand () - 1.0;

} while (fabs(x*x + y*y) > 1.0);

cout << x << " " << y << endl;

}

}

Variation. While the number of points is hard-coded in this version, for your exper-
iments it might be convenient to specify the number of points on the command-line.
This could be done by changing the main function prototype to

int main(int argc, char *argv[])

and converting the first command-line parameter to an integer before the for loop, e.g.

int numpoints = 50; // default value still 50

if (argc > 1) {

numpoints = atoi(argv[1]);

}

6.2. Intersections from a list of segments. This modified version of the CGAL
example program sweep_line.cpp reads segments from standard input instead of using
a fixed dataset, and it works with floating-point types instead of exact rational numbers.

// sweep -line -cin.cpp

// MCS 481 project 1 description version 1.0

// Modified version of CGAL example ’sweep_line.cpp ’

//

// Read segments from stdin , one per line in format: px py qx qy

//

// Print number of segments read , list of intersection points , and

// total number of intersection points.

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Arr_segment_traits_2.h>

#include <CGAL/Sweep_line_2_algorithms.h>

#include <list >

// Use "inexact" kernel for approximate results with floating -point input

typedef CGAL:: Exact_predicates_inexact_constructions_kernel Kernel;

typedef Kernel :: Point_2 Point_2;

typedef CGAL:: Arr_segment_traits_2 <Kernel > Traits_2;

typedef Traits_2 :: Curve_2 Segment_2;

int main()

{

CGAL:: set_ascii_mode(std::cin);

// Read the segments from stdin and store them in a list.

std::list < Segment_2 > segments;

Point_2 p,q;

for (std:: istream_iterator < Point_2 > i(std::cin);

i != std:: istream_iterator < Point_2 >();

i++) {

p = *i; i++; q = *i;

Segment_2 s(p,q);

segments.push_back(s);

}

std::cout << "Read " << segments.size() << " segments ." << std::endl;

// Compute all intersection points.

std::list <Point_2 > pts;

CGAL:: compute_intersection_points (segments.begin(), segments.end(),

std:: back_inserter (pts));

// Print the result.

std::cout << "Intersection points: " << std::endl;

std::copy (pts.begin(), pts.end(),

std:: ostream_iterator <Point_2 >(std::cout , "\n"));

std::cout << "Total number of intersection points: " << pts.size() << std::endl;

// The orginal CGAL example does more computations , but we stop here.

return 0;

}

