## Math 180 / Spring 2014 / David Dumas Quiz 5: Common mistake #1 February 14, 2014

**Problem.** The parabola  $y = \frac{1}{2}x^2 - x + 2$  has two tangent lines that pass through (0,0). Find the equation of one of these lines.

**Common mistake.** By far the most common incorrect answer given by students taking this quiz was

$$y = -x$$

which was typically derived by the following process:

(1) Find the slope of the tangent line to  $y = \frac{1}{2}x^2 - x + 2$  at x = 0.

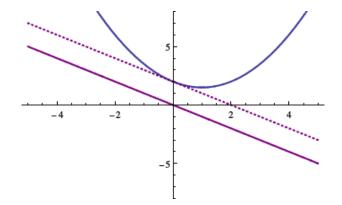
(2) Find the equation of a line with this slope passing through (0,0).

There are two problems with this approach.

The first is that the tangent line at x = 0 does not pass through (0,0), so it is not one of the lines the problem asks about. In fact, since (0,2) is the point on this parabola with x = 0, and dy/dx = -1 at x = 0, the equation of this tangent line is

$$y - 2 = -1(x - 0)$$

or, in slope-intercept form


$$y = -x + 2.$$

The nonzero y-intercept shows this line does not pass through the origin.

The second problem is that in step (2) one is changing the *y*-intercept to zero, so the line is no longer a tangent of the parabola. Here the effect is to move the tangent line down two units so that is passes through the origin.

**Graph.** The figure below shows the tangent line to the parabola at x = 0 (dotted line), and the parallel line y = -x which passes through (0, 0) (solid line).

Notice that the dotted line is a tangent but does not pass through (0,0), while the solid line passes through (0,0) but is not a tangent. The problem asks for a line with both properties. (One way to find such a line is explained in the quiz 5 solution.)

