
Math 550 / David Dumas / Fall 2014

Problems

Please note:

• This list was last updated on November 30, 2014.

• Problems marked with * are challenge problems.

• Some problems are adapted from the course texts; these are marked with a citation of the
form [Author, Chapter.Problem] or similar.

• Sometimes the “answer” to one of these problems might come up in lecture. You can still
complete such problems for credit, but you must carefully write up all of the details.

(1) * Prove Elie Cartan’s formula LX ω = iX(dω)+d(iX ω) by the following strategy:
(a) Suppose T : Ω∗(M)→ Ω∗(M) is linear map (preserving degree of forms, T : Ωk → Ωk)

satisfying
(i) T (α ∧β ) = (T α)∧β +α ∧ (T β ), and

(ii) T (d f ) = d(T f ) for all f ∈Ω0(M) =C∞(M).
Show that T is uniquely determined by its action on Ω0(M).

(b) Show that each side of Cartan’s formula (i.e. the maps ω 7→ LX ω and ω 7→ iX(dω) +
d(iX ω)) satisfies the properties (i) and (ii) above.

(c) Show that Cartan’s formula holds for functions, and in fact that

LX f = (iX(d f )+d(iX f )) = X f .

(2) * Prove that, as mentioned in class, the “radial flow” approach to the Poincaré lemma can be
generalized to show that no compact orientable manifold is smoothly contractible to a point. In
other words:
(a) Adapt the radial flow method to show that a manifold smoothly contractible to a point has

no de Rham cohomology in positive degrees. (This should involve a homotopy operator
that averages pullbacks of a form over the family of maps that give the smooth contraction.)

(b) Show Hn(M) 6= 0 for M a compact orientable manifold.

(3) Show how the Poincaré lemma implies the following facts from vector calculus, and work out
the formula that it gives for a primitive in each case:
(a) Every smooth vector field on R3 with zero curl is the gradient of a function.
(b) Every smooth vector field on R3 with zero divergence is the curl of a vector field.
(c) Every smooth function on R3 is the divergence of a vector field.

(4) (Lee, 11-1) Show that the wedge product of forms induces a well-defined bilinear map H p(M)×
Hq(M)→ H p+q(M).

(5) (Lee, 11-6) Let M be a compact, connected, orientable n-manifold and p ∈M a point. Decom-
pose M =U ∪V where U ' Rn is an open neighborhood of p and V = M \{p}. Show that the
connecting homomorphism

δ : Hn−1(U ∩V )→ Hn(M)



of the Mayer-Vietoris sequence for de Rham cohomology is an isomorphism. Hint: U ∩V is
diffeomorphic to Rn \{0}; construct an explicit (n−1)-form on this set which is closed but not
exact.

(6) (Spivak, 7.4) Show that the interior product iX : Ω∗(M)→Ω∗−1(M) satisfies
(a) iX(iY ω) =−iY (iX ω)
(b) iX(α ∧β ) = (iX α)∧β +(−1)kα ∧ (iX β ) where α ∈Ωk(M)

A previous version of this problem contained a typographical error.

(7) (Spivak, 7.6)
(a) Show that any alternating 2-form on a 3-dimensional vector space is the wedge product of

two 1-forms.
(b) Give an example of a 2-form on a 4-dimensional vector space that is not the wedge product

of two 1-forms.

(8) * (Spivak, 7.25) Show that any star-shaped open set U ⊂ Rn is diffeomorphic to Rn.
• Hint: This is more complicated than it looks because the distance from the origin to the

boundary of U can vary discontinuously. For example, take the open unit ball in R3 and
remove the line segment from (1/2,0,0) to (1,0,0).
• Disclosure: This is really a problem in differential topology, and as such it is not closely

related to any of the techniques we cover in this course (except perhaps the Whitney Ap-
proximation Theorem). However, it’s a nice problem.

(9) Let M ⊂ Rn be a compact embedded submanifold. Define a function Rn→ R≥0 by

dM(x) = inf
y∈M
|x− y|,

where |x| is the usual norm on Rn. For any ε > 0 let Uε = d−1
M ([0,ε)). Show that there exists

ε > 0 such that
• The restriction of dM to Uε \M is a smooth function,
• For each x ∈Uε there exists a unique point r(x) ∈M with |x− r(x)|= dM(x), and
• The function r : Uε →M thus defined is a smooth retraction.
A previous version of this problem contained a typographical error.

(10) Let M be a smooth manifold and α a closed 1-form. Define the α-deformed exterior derivative
dα : Ωk(M)→Ωk+1(M) as follows:

dα(ω) := dω +α ∧ω

(a) Show that (Ω∗(M),dα) is a cochain complex (the deformed de Rham complex).
(b) Show that if α is exact, then the cohomology groups H∗α(M) of the deformed de Rham

complex are isomorphic to the usual de Rham cohomology groups H∗(M).
(c) * Give an example of M and α such that H∗(M) 6' H∗α(M). (This part of the problem is

optional, but completing it makes this count as a challenge problem.)

(11) (a) Let D be a finite set of points in R2. Compute the de Rham cohomology H∗(R2 \D) by
exhibiting an explicit basis in each degree. (You must show that your forms are a basis by
verifying that they are closed, linearly independent modulo exact forms, and that they span
the cohomology group.)

(b) Do the same thing for the complement of a finite set in R3.



(12) The de Rham theorem shows that the de Rham cohomology H∗(M) and the singular homology
H∗(M,R) of a smooth manifold M are dual vector spaces. For each of the manifolds below, give
dual bases of de Rham cohomology and singular homology in each degree:
(a) The 2-torus, R2/Z2.
(b) The 2-sphere
(c) The 3-sphere

Your basis for each de Rham space should consist of explicit differential forms. For the sin-
gular spaces the basis elements can be explicit chains or the fundamental classes of (explicitly
described) embedded oriented submanifolds.

(13) * Same question as above, but for these manifolds:
(a) The complex projective plane, CP2.
(b) An oriented smooth surface of genus 2.
(c) The complement of three lines in R3, each pair of which meet in a single point (but where

no point lies on all three lines).

(14) (Lee, 18-6) Let H∗c (M) denote the cohomology of the chain complex Ω?
c(M) of compactly

supported differential forms (with the usual exterior derivative as differential).
(a) Give an example to show that, in general, a smooth map F : M → N between manifolds

does not induce a pullback map F∗ : H?
c (N)→ H?

c (M).
(b) Show that an inclusion of an open set i : U ↪→M induces an “extension by zero” map

i∗ : H?
c (U)→ H?

c (M)

and hence that, in this sense, compactly supported cohomology exhibits covariant behavior.

(15) (Lee, 18-6) Show that if {U,V} is an open cover of M, then there is a long exact sequence of
compactly supported cohomology groups

· · · → Hk
c (U ∩V )→ Hk

c (U)⊕Hk
c (V )→ Hk

c (M)→ Hk+1
c (U ∩V )→ ···

Give an explicit description of the connecting homomorphism and a formula for the maps
between cohomology groups of equal degrees in terms of the inclusions among U ∩V,U,V,M.

(16) Show that the de Rham map is an isomorphism of rings, taking the wedge product on H∗dR(M)
(see Problem 4) to the cup product on H∗(M,R).

(17) * (Lee, 18-7) The Poincaré duality theorem for de Rham cohomology asserts that if M is an
oriented smooth n-manifold, then there is a nondegenerate bilinear form

P : Hk(M)×Hn−k
c (M)→ R

given by

P([ω], [η ]) =
∫

M
ω ∧η .

Equivalently this integration map gives an isomorphism Hk(M)' Hn−k
c (M)∗, and for compact

M this implies Hk(M)' Hn−k(M)∗.
(a) Show that P is well-defined on cohomology.
(b) Imitate the proof of the de Rham theorem given in lecture to prove the Poincaré duality

theorem. You will need to use a version of the Poincaré lemma for compactly supported
forms (See e.g. Lemma 17.27 in Lee).



(18) * (Bott-Tu, 5.16) Let M be an oriented manifold of dimension n. Let S ⊂M be an embedded
oriented submanifold of dimension k.
(a) Suppose S is closed (as a subset of M). Integrating compactly supported k-forms on M over

S gives a linear functional Hk
c (M)→ R. By Poincaré duality, this functional is represented

by a class [ηS] ∈ Hn−k(M), the closed Poincaré dual of S. Describe this class for each of
these cases:

(i) M = Rn, S =point.
(ii) M = R2 \{0}, S = unit circle.

(iii) M = R2 \{0}, S = ray. (That is, S = {(x,0) | x > 0}.)
(b) Suppose S is compact. Integrating arbitrary k-forms on M over S gives a linear functional

Hk(M)→R. By Poincaré duality this functional is represented by a class [η ′S] ∈Hn−k
c (M),

the compact Poincaré dual of S. Describe this class for the submanifolds (i) and (ii) from
part (a).

Remark: Notice that these two notions of Poincaré dual agree if M is compact.

(19) Let M be a compact oriented manifold and S a compact oriented embedded submanifold. Let
[ηs] ∈ Hn−k(M) be the Poincaré dual of S, in the sense of the previous problem. Show that for
any open neighborhood U of S in M, the class [ηs] can be represented by a form that is supported
inside U .

(20) Show that these two definitions of a vector field on a smooth manifold are equivalent, and
describe the equivalence.

Def 1: A vector field is a derivation X : C∞(M)→C∞(M), i.e. a R-linear map satisfying X( f g) =
X( f )g+ f X(g).

Def 2: A vector field is a smooth map X : M→ T M such that π ◦X = idM, where π : T M→M is
the projection taking a tangent vector to its base point.

(21) The real quaternions are the 4-dimensional R-algebra spanned (as a vector space) by {1, i, j, i j}
subject to the relations i j = − ji, i2 = j2 = −1. The norm of a quaternion w is

√
ww̄ where if

w = a+bi+ c j+di j for a,b,c,d ∈ R then w̄ = a−bi− c j−di j. (Note that ww̄ is always real
and nonnegative.)
(a) Show that the unit quaternions form a Lie group that is diffeomorphic to S3 (the 3-sphere).
(b) Show that the Lie algebra of this Lie group is naturally isomorphic to R3 equipped with the

vector cross product as its Lie bracket.
(c) Compute the Maurer-Cartan form of this Lie group in terms of the differentials of the

coordinate functions a,b,c,d.

(22) (a) Show that S2 cannot be given the structure of a Lie group.
(b) Show that RP3 has the structure of a Lie group.
(c) Give an example of two connected Lie groups that are diffeomorphic but not isomorphic

as Lie groups.
A previous version of this problem contained a typographical error.

(23) * Show that S7 cannot be given the structure of a Lie group.

(24) Classify Lie algebras of dimension at most 2 over R up to isomorphism.

(25) * Classify Lie algebras of dimension at most 3 over C up to isomorphism.



(26) * Classify Lie algebras of dimension at most 3 over R up to isomorphism.

(27) Show that a left-invariant vector field on a Lie group is complete, i.e. the resulting flow Φt is
defined on all of G×R.

(28) Fill in the details of this proposition whose proof was sketched in lecture: If a differential form
ω ∈ Ωk(G) is left-invariant and if ω(e) ∈ (g∗)⊗k is invariant under the representation (ad∗)⊗k

of g, then ω is also right-invariant.

(29) Let H2n+1 denote the Lie group structure on R2n+1 given by (a,b,c) · (a′,b′,c′) = (a+ a′,b+
b′,c+ c′+ 〈a,b′〉) where a,a′,b,b′ ∈ Rn and c,c′ ∈ R. Here 〈·, ·〉 denotes the standard inner
product on Rn.
(a) Describe the Lie algebra h2n+1 =Lie(H2n+1) explicitly (for example by listing all nontrivial

brackets for some basis)
(b) Compute the exponential map exp : h2n+1→ H2n+1.

(30) * Compute the Lie algebra cohomology H∗(g) for g= h3 and g= h5. (See the previous problem
for the definition of these Lie algebras.)

(31) Show that the exponential map for SL(2,R) is not surjective.

(32) For each of the elements of sl(2,R) below, compute the corresponding 1-parameter subgroup
of SL(2,R). Then describe the orbits of points in H under the images of these subgroups in
PSL(2,R). (Here H is the upper half-plane in C on which PSL(2,R) acts by Möbius transfor-
mations, z 7→ az+b

cz+d ).

(a)
(

0 1
0 0

)
(b)

(
0 0
1 0

)
(c)
(

1 0
0 −1

)
(d)

(
0 1
−1 0

)
(33) Show that the torus T 2 = S1× S1 is the only compact, connected, 2-dimensional Lie group.

(Hint: Problem 24 and χ = 0 will be helpful.)

(34) * (This problem assumes some familiarity with Riemannian geometry.) Suppose b(·, ·) is an ad-
invariant positive definite inner product on g = Lie(G). Using the trivialization of the tangent
bundle, T G ' G× g we can consider b as a Riemannian metric on G. Show that 1-parameter
subgroups of G are geodesics of this metric.

(35) (a) Show that SL(n,R) is diffeomorphic to SO(n)×Rd for a suitable positive integer d.
(b) Show that the diffeomorphism in part (a) cannot be a Lie group isomorphism (regardless

of what Lie group structure is applied to Rd).

(36) Let ω ∈Ω3(SU(2)) be the bi-invariant 3-form associated to the ad-invariant Lie algebra cocycle

ωe(x,y,z) = B([x,y],z)



where B is the Killing form on su(2), i.e. B(x,y) = tr(adx ◦ ady).
(a) Show that ω is proportional to the standard volume form when SU(2)' S3 is considered as

the unit sphere in R4. (One definition of the “standard volume form” on S3 is the pullback
via S3 ↪→ R4 of the 3-form iρ(dx1∧dx2∧dx3∧dx4) where ρ is the unit vector field on R4

pointing away from the origin.)
(b) Calculate the coefficient of proportionality relating these volume forms.

(37) Give an example of a Lie algebra g that has a non-split central extension g̃ by R. (In partic-
ular, prove that your extension is not isomorphic to the Lie algebra g⊕R.) Also exhibit the
corresponding element ω ∈ H2(g).

(38) Suppose G is a Lie group with Lie algebra g, and E ⊂ g is a subspace. Let ωG denote the
Maurer-Cartan form on G, and let p : g→ g/E denote the quotient map. Then p ◦ωG is a
1-form on G with values in g/E.

(a) What conditions must the subspace E satisfy in order for the ideal generated by p◦ωG in
Ω∗(G) to be differential?

(b) In cases where this ideal is differential, describe the leaf Le of the associated foliation of G.

(As in lecture, we use the convention that “the ideal generated by a V -valued 1-form α” is
shorthand for the ideal in Ω∗ generated by all 1-forms obtained by composing α with a linear
functional V → R.)

(39) (a) Show that the pullback of a fiber bundle, as defined in lecture, is a fiber bundle. That is,
if π : E → B is a fiber bundle with fiber F , and if φ : B′ → B is a continuous map, then
defining

φ
∗E = {(e,b′) | e ∈ E,b′ ∈ B,π(e) = φ(b′)}

gives a fiber bundle with projection π ′ : φ ∗E→ B′ given by (e,b′) 7→ b′.
(b) Show that the product of fiber bundles over a fixed base, as defined in lecture, is a fiber

bundle. Here E ×B E ′ is defined as {(e,e′) ∈ E × E ′ | π(e) = π ′(e′)} with projection
(e,e′) 7→ π(e).

(40) Give an example of a non-trivial fiber bundle π : E→ B and a fiber bundle π ′ : E ′→ B such that
E×B E ′ is trivial.

(41) Give an example of a topological space E that is the total space of infinitely many non-isomorphic
fiber bundles. (You need to describe E, construct an infinite collection of bundles πn : E → Bn,
and then show that no two of the bundles are isomorphic.)

(42) * Give an example of a compact, connected manifold E that is the total space of infinitely many
non-isomorphic smooth fiber bundles, each of which has connected fibers.

(43) Show that the orthogonal frame bundle of a Riemannian manifold is a principal bundle. (This
amounts to filling in the details about constructing local trivializations.)

(44) Suppose that X is a topological space and φ : X → X is a homeomorphism. Define

E = (X× [0,1])/∼

where (φ(x),1)∼ (x,0). Show that E has a the structure of a fiber bundle over S1 with fiber X .



(45) Give an example of a fiber bundle (with fiber F) that does not admit a G-structure for any finite
group G⊂ Homeo(F).

(46) Let π : P→ B be a principal G-bundle and F a left G-space. Prove that the two definitions of
the F-bundle associated to P are equivalent, and that each gives a G-structure on a fiber bundle
over B with typical fiber F . The definitions are:
• Global quotient definition: The group G has a left action on the product space P×F by

g · (p, f ) = (p · g−1,g · f ). Let P×G F := (P×F)/G denote the quotient space, and π̃ :
P×G F → B the map induced by (p, f ) 7→ π(p). Then (P×G F,B, π̃,F) is the associated
fiber bundle.
• Local trivialization definition: Let {Uα}α∈A be an open cover of B with associated local

trivializations of P given by φα : π−1(Uα)→Uα ×G, and fiber transition maps tαβ : Uα ∩
Uβ → G. Define P×G F as the quotient space of⊔

α∈A

(Uα ×F)

by the equivalence relation generated by

(x, f ) ∈ (Uβ ×F) ∼ (x, tαβ (x) · f ) ∈ (Uα ×F)

where x ∈Uα ∩Uβ . The projection map π̃ : P×G F→ B is induced by the maps (x, f ) 7→ x
on each Uα ×F component.

(47) (a) Classify the principal Z/2 bundles over S1 up to isomorphism.
(b) Consider the Z/2 action on S1 =R/Z where the nontrivial element acts as the flip x 7→ −x.

For each principal Z/2-bundle over S1, describe the topology of the associated S1 fiber
bundle over S1.

(c) Consider the Z/2 action on S1 = R/Z where the nontrivial element acts as the half-turn
x 7→ x+ 1

2 . For each principal Z/2-bundle over S1, describe the topology of the associated
S1 fiber bundle over S1.

(48) Recall that S3 can be identified the total space of a principal S1-bundle over S2. Thus for each
smooth action of S1 on a manifold F , we have an associated fiber bundle S3×S1 F .

For each integer n, the Lie group S1 acts on itself by multiplication by zn. Call this left S1-
space Fn. What is the total space of the resulting 3-manifold En := S3×S1 Fn? (That is, identify
it as a “manifold you know” from another construction.)

Example: E0 = S2×S1, and E1 = S3.

(49) What is the relation between these two notions?
• A smooth real vector bundle of rank n over a manifold M
• A smooth principal Rn-bundle over M (where Rn is considered as an abelian Lie group)

Prove your claims, e.g. by showing they are equivalent notions, or that one is more restrictive,
or that each one includes some objects that do not belong to the other class.

(50) Prove that these two definitions of a torsion-free connection on the frame bundle FM are equiv-
alent.

Def 1: Let ω ∈ Ω1(FM,gl(n,R)) be a connection on the frame bundle, and let Θ ∈ Ω1(FM,Rn)
be the solder form, i.e.

Θ(x,φ)(ξ ) = φ
−1(dπ(ξ )).



Then we say ω is torsion-free if

dΘ+ω ∧θ = 0

where ω ∧θ ∈Ω2(FM,Rn) is obtained by taking the wedge product of forms (resulting in
an element of Ω2(FM,gl(n,R)⊗Rn)), and then composing this with the linear action map
gl(n,R)⊗Rn→ Rn.

Def 2: First observe that any local frame (ξ1, . . . ,ξn) with ξi ∈Vect(U), U ⊂M, determines a local
section σ : U → FM by

σ(x) = (x,φx), φx(ei) = ξi(x).

Now let H be the horizontal distribution of a connection on the frame bundle. We say the
connection is torsion-free if for each p ∈ FM the horizontal space Hp is the tangent space
of a local section σ that arises from a Lie-commuting local frame near π(p).

(51) Show that for any smooth manifold M, the total space of the frame bundle FM is a parallelizable
manifold.

(52) (Cannas da Silva, 2.1) Let V be a vector space over R of dimension 2n. Show that an element
α ∈

∧2(V ∗) is symplectic (that is, (V,α) is a symplectic vector space) if and only if αn is
nonzero. Here αn = α ∧·· ·∧α .

(53) Give an example of a compact connected orientable manifold M of even dimension which has
H2k(M,R) 6= 0 for each k, but which does not admit a symplectic structure.

(54) Let (V,ω) be a symplectic vector space.
(a) Show that the set of Lagrangian subspaces of V , considered as a subset of the Grassman-

nian, is a compact connected smooth manifold.
(b) Show that the set of symplectic subspaces of V of a fixed dimension, considered as a subset

of the Grassmannian, is a connected smooth manifold. Show that except in dimensions 0
and dim(V ), this manifold is not compact.

(55) * An almost symplectic structure on a manifold M is a nondegenerate alternating 2-form ω ∈
Ω2(M). Give an example of a manifold that has an almost symplectic structure but no symplec-
tic structure.

(56) * A symplectic structure on a manifold M of dimension 2n gives a reduction FSpM ⊂ FM of
the frame bundle to the symplectic group Sp(2n,R)⊂ GL(2n,R). Show that a reduction FSpM
arises from a symplectic structure ω if and only if FSpM has a torsion-free connection.

(57) Let g be a finite-dimensional Lie algebra, and g∗ its dual vector space. Consider g∗ ' Rn as a
smooth manifold. We have an embedding e : g→C∞(g∗) by e(x)(y) = y(x). Show that C∞(g∗)
has a unique Poisson algebra structure such that {e(x),e(y)}= e([x,y]).

(58) * Show that the Poisson structure constructed in the previous problem does not arise from any
symplectic structure on the manifold g∗.

(59) * (This problem assumes some familiarity with Riemannian geometry.) Show that, as claimed in
lecture, the geodesic equation on a Riemannian manifold (M,g) corresponds to the Hamiltonian



flow of the function H(x,v) = 1
2 g(v,v) on T M, where T M has the symplectic structure arising

from the isomorphism T M ' T ∗M given by g.


