Math 180 / David Dumas / Fall 2014

Solution and Rubric for Quiz 12 (Wed Nov 5)

Problem: Use linear approximation to estimate $\sqrt{80}$. Write your answer as a single fraction p/q, where p and q are integers.

Solution: We notice that 80 is close to the perfect square $81 = 9^2$, so $\sqrt{80}$ will be close to 9. To get a better estimate we compute the linear approximation to $f(x) = \sqrt{x}$ at the point x = 81.

In general, the linear approximation of f at x = a is

$$L(x) = f(a) + f'(a) \cdot (x - a).$$

Since f(81) = 9 and $f'(81) = \frac{1}{2\sqrt{81}} = \frac{1}{18}$, in this case we have

$$L(x) = f(81) + f'(81)(x - 81) = 9 + \frac{1}{18}(x - 81)$$

The linear approximation of $\sqrt{80}$ is therefore

$$f(x) \approx L(80) = 9 + \frac{1}{18}(80 - 81) = 9 - \frac{1}{18} = \frac{161}{18}$$

Rubric:

- If the final answer is correct, and is supported by clear and correct work: 2 points
- Otherwise, if the function $f(x) = \sqrt{x}$ and a = 81 were recognized and the linear function L(x) was computed correctly: 1 point
- Otherwise: 0 points