Math 180 / David Dumas / Fall 2014

Correction to example from Lecture 25 (Oct 22)

Problem: Suppose f(x) is a function satisfying

e f(0)=1

e fisincreasing on (—oo,1) and (3, )

e f has alocal maximum atx =1

e f has alocal minimum at x = 3

e fisconcave up on (—oo,—1) and (2,)

Let g(x) = f'(x). Sketch what the graph of g(x) might look like.

Solution:
We translate the statements into properties of g(x) = f'(x):

f(0) = 1 says nothing about g(x)

g is positive on (—oo, 1) and (3, )

g changes sign from positive to negative at x = 1
g changes sign from negative to positive at x =3
g is increasing on (—oo, —1) and (2, )

Here is a graph that has these properties (which would be an acceptable solution to the problem):
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In lecture on October 22, I drew a similar figure but incorrectly had the graph of g crossing the
x-axis at some negative value of x. This is not consistent with the given information because g is
supposed to be positive for all x < 1.



(Note: The corresponding graph of f(x) would look something like the picture below. The
problem did not ask for this, but it might be helpful in understanding the image above.)
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