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Irreducible Holonomy

Theorem. The holonomy representation of a CP1 structure on a compact
surface of genus g > 1 is irreducible.

Proof summary. If the holonomy is reducible, the residue theorem shows that
the CP1 structure is actually an affine structure, hence the tangent bundle has
degree zero and g = 1.

Proof. Suppose on the contrary that X is a Riemann surface of genus g > 1
which has a projective structure (f, ρ) such that ρ : π1S → PSL2C is reducible.

Without loss of generality we assume that ρ(π1S) is contained in the stabi-
lizer of ∞ ∈ CP1, since every reducible representation is conjugate to one of
this form. Thus each holonomy element is a complex affine map, of the form
z 7→ (az + b).

By uniformization we have X ' H/Γ for a Fuchsian group Γ, so we can
regard the developing map f as a meromorphic function on H.

The nonlinearity N(f) = f ′′/f ′ is a meromorphic 1-form on H. This form
is Γ-invariant since the nonlinearity is unchanged by post-composition with
complex affine maps. Thus N(f) descends to a meromorphic 1-form ω on X.

Since f is an immersion into CP1, the only poles of N(f) are in f−1(∞). A
local calculation shows that each such preimage of∞ gives a pole with residue
−2:

f(z) = az−1 + b+ cz + · · ·

N(f)(z) = −2z−1 − 2c

a
z + · · ·

Therefore, all poles of ω have the same nonzero residue. However, the residues
of a meromorphic 1-form on a compact Riemann surface sum to zero. Therefore
ω has no poles and f−1(∞) is empty, i.e. the developing map has image in C.

It follows that (f, ρ) actually induce on X a complex affine structure, defined
by charts into C with transition functions in {z 7→ az + b}. The desired
contradiction is therefore furnished by the following lemma. �

Lemma. If a compact Riemann surface X admits a complex affine structure,
then X has genus 1.

Proof. The transition functions for the affine structure have constant deriva-
tive. Thus the tangent bundle of X can be described by transition functions
that are constant. However, any line bundle with constant transition func-
tions has vanishing first Chern class∗. Since c1(TX) = 2 − 2g, it follows that
g = 1. �

Here are some more details on the point (*), that constant transition func-
tions imply vanishing of the Chern class: There is an exact sequence of sheaves
on X,

0→ C∗ → O∗ → O1,0 → 0
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where C∗ is the constant sheaf, O∗ is the sheaf of nonvanishing holomorphic
functions, and O1,0 of holomorphic 1-forms. Here the map C∗ → O∗ is just
the inclusion, while O∗ → O1,0 is the logarithmic derivative, f 7→ d log(f).

Writing out the associated long exact sequence in cohomology we find

(1) H1(C∗)→ H1(O∗)→ Z→ 0

where the constant sheaf Z is actually the kernel of[
C ' H0(O) '

]
H1(O1,0) −→ H2(C∗) [' C∗] ,

a map that can be identified with the exponential. (In the bracketed annota-
tions above, we have used Serre duality and universal coefficients to compute
these cohomology groups.)

Finally, H1(O∗) represents the isomorphism classes of line bundles, and a
line bundle can be described by constant transition functions exactly when it
is in the image of H1(C∗). The exact sequence (1) shows that this image is
the kernel of the homomorphism H1(O∗)→ Z, which is the first Chern class.

Exercise

Both CP1 itself (g = 0) and punctured Riemann surfaces of higher genus
admit projective structures with reducible holonomy. How does the proof
above break down in these cases?

Notes

This proof that a CP1 structure with reducible holonomy has developing
map which omits the holonomy fixed point is taken from [AGF30, pp. 297–
300, 305–306]. Gunning presents a different argument in [Gun67, Prop. A4],
based on the rank-2 vector over X arising from lifting the holonomy map to
SL2C and acting on C2.

The relation between the Chern class and constant transition functions is
detailed in [Gun66, Sec. 8a]. This is also a standard consequence of Chern-Weil
theory, since bundles with constant transition functions admit a flat connection
and the de Rham class of c1 is represented by the trace of the curvature of a
connection (see e.g. [GH78, pp. 139–144]).
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