Math 535 - Complex Analysis Challenge Problems

Version 2010-04-07 David Dumas

- (C1) Show that any zero of the Riemann zeta function with nonzero imaginary part lies on the line $\operatorname{Re}(z) = \frac{1}{2}$.
- (C2) Circles and stereographic projection.
 - (a) Show that stereographic projection determines a bijection between the set of circles on the unit sphere in \mathbb{R}^3 and the set of generalized circles in \mathbb{C} . (For the purposes of this problem, define a circle on the unit sphere to be the intersection of the sphere with a plane, whenever that intersection is nonempty and is not a single point. A generalized circle in \mathbb{C} is a circle or a straight line.)
 - (b) Let C be a circle in \mathbb{C} with center z and radius r. Find a formula for a, b, c, d such that the corresponding circle on the unit sphere is the intersection of S^2 with $\{(x, y, z) \mid ax + by + cz = d\}$.
- (C3) Let $\mathcal{H}(\mathbb{C})$ denote the vector space of *entire* functions, i.e. analytic functions defined on the whole complex plane \mathbb{C} . Note that $\mathcal{H}(\mathbb{C})$ is closed under multiplication and composition of functions. Let $E_0 \subset \mathcal{H}(\mathbb{C})$ denote the subspace spanned by the polynomials and the exponential function $\exp(z) = e^z$, and let E denote the space of functions obtained from those in E_0 by a finite sequence of addition, multiplication, and composition. (Thus for example E contains $f(z) = 3 \exp(z^2 + z \exp(ze^z)) - z^3 e^{-8z}$.)

Show that the vector space $\mathcal{H}(\mathbb{C})/E$ is infinite-dimensional.

(C4) Let f(z) be an analytic function defined on \mathbb{C} . The Newton map of f(z) is the function

$$N_f(z) = z - \frac{f(z)}{f'(z)}.$$

Newton's method is a computational method for locating zeros of the function f(z), starting from an initial guess z_0 . We define a sequence $\{z_i\}$ by $z_{i+1} = N_f(z_i)$. We say that the method succeeds if the sequence z_i converges to a point z_{∞} such that $f(z_{\infty}) = 0$, and that it fails otherwise. (Note that the method may fail because $N_f(z_k) = \infty$ for some k, in which case the iteration stops.)

- (a) If p(z) = (z A)(z B) is a quadratic polynomial with distinct roots $A, B \in \mathbb{C}$, show that Newton's method succeeds if and only if z_0 is closer to one of the two roots; equivalently, the method fails if and only if z_0 lies on the line perpendicularly bisecting the segment AB. (It might be instructive to think about the polynomials $z^2 1$ and $z^2 + 1$.)
- (b) Say something nontrivial about what happens when Newton's method fails for a quadratic polynomial. (e.g. Why does it fail? Does the sequence always terminate at ∞ after finitely many steps, or can something else happen?)
- (C5) A smooth function $f(\theta)$ on the unit circle can be extended to a harmonic function F(z) on the unit disk using the Poisson integral formula. Given $f(\theta)$, define another function $g(\theta)$ on the circle by

$$g(\theta) = \frac{1}{2\pi} \int_0^{2\pi} f(\phi) \cot\left(\frac{\theta - \phi}{2}\right) d\phi.$$

Note that the integrand has a singularity at $\theta = \phi$, so the integral should be understood as a principal value

$$g(\theta) = \lim_{\epsilon \to 0^+} \frac{1}{2\pi} \int_{|\phi - \theta| > \epsilon} f(\phi) \cot\left(\frac{\theta - \phi}{2}\right) d\phi.$$

Let G(z) denote the harmonic extension of $g(\theta)$. Show that F(z) and G(z) are harmonic conjugates, i.e. that F(z) + iG(z) is an analytic function.

(C6) The identity

$$\cos(n\theta) + i\sin(n\theta) = e^{in\theta} = \left(e^{i\theta}\right)^n = \left(\cos(\theta) + i\sin(\theta)\right)^n$$

shows that for each integer $n \ge 0$ there is a polynomial $T_n(x)$ with the property that

$$T_n(\cos(\theta)) = \cos(n\theta).$$

- (a) Explain this. (That is, why does the existence of $T_n(x)$ follow from the identity?)
- (b) Write out $T_n(x)$ for n = 1, 2, 3, 4, 5.
- (c) Show that $T_n(x)$ is the coefficient of t^n when the function $\frac{1-xt}{1-2xt+t^2}$ is expanded as a Taylor series in t about the point t = 0, i.e.

$$\frac{1 - xt}{1 - 2xt + t^2} = \sum_{n=0}^{\infty} T_n(x)t^n.$$

(C7) Show that one can detect vertices of a regular *n*-gon in \mathbb{C} with finitely many polynomial conditions; that is, for any $n \geq 3$, find a set of polynomials F_1, F_2, \ldots, F_k in *n* variables such that the complex numbers a_1, a_2, \ldots, a_n are the vertices of a regular *n*-gon if and only if $F_i(a_1, \ldots, a_n) = 0$ for $i = 1, 2, \ldots, k$.

Note that in your homework you showed that this is possible for n = 3 and k = 1, where $F_1(a, b, c) = a^2 + b^2 + c^2 - bc - ac - ab$.

Hint: What is the most general polynomial of degree n whose roots form a regular n-gon?

- (C8) Construct a sequence of analytic functions $f_n(z)$ on a domain Ω that converge pointwise to a function f(z) that is *not* analytic. (Note: It should be a bit surprising that this is possible.)
- (C9) Give an example of an analytic function defined by a power series $f(z) = \sum a_n z^n$ with radius of convergence R = 1 such that $\sum a_n = S$ but $\lim_{z \to 1} f(z)$ does not exist. (Compare to Abel's theorem, which says that $f(z) \to S$ as z approaches 1 non-tangentially.)
- (C10) Give an example of an open set Ω and an analytic function f(z) on Ω that cannot be extended to an analytic function in a neighborhood of any point in $\partial\Omega$. More precisely, show that for any $z_0 \in \partial\Omega$ it is impossible to find an analytic function g(z) defined in a neighborhood U of z_0 such that g(z) = f(z) on $U \cap \Omega$.
- $(C10\frac{1}{2})$ Give an example of an analytic function f(z) on the open unit disk Δ that cannot be extended to an analytic function in a neighborhood of any point in $\partial\Delta$. More precisely, show that for any $z_0 \in \partial\Delta$ it is impossible to find an analytic function g(z) defined in a neighborhood U of z_0 such that g(z) = f(z) on $U \cap \Delta$.
- (C11) Suppose $A_n \in \text{PSL}_2(\mathbb{C})$ is a sequence of Möbius transformations such that $||A_n|| \to \infty \text{ as } n \to \infty$. (Here we use the notation $||\begin{pmatrix} a & b \\ c & d \end{pmatrix}|| = \sqrt{|a|^2 + |b|^2 + |c|^2 + |d|^2}$.)

Show that there exists a subsequence A_{n_i} and two points $x, y \in \hat{\mathbb{C}}$ such that for any closed disk D that does not contain y, the sequence of functions $A_{n_i}(z)$ converges uniformly to the constant function x on D. (For example, if $A_n(z) = nz$, then no subsequence is necessary, and one can take y = 0 and $x = \infty$.)

- (C12) Fix a point $p \in \mathbb{C}$ and let \mathscr{O}_p denote the set of pairs (U, f) where U is an open neighborhood of p and f is an analytic function defined on U. We say that (U, f)and (V, g) are equivalent as germs if f(z) = g(z) for all $z \in U \cap V$; in this case we write $(U, f) \sim (V, g)$.
 - (a) Show that the set of equivalence classes $\mathscr{O}_p = \widetilde{\mathscr{O}}_p / \sim$ forms a ring, i.e. that pointwise addition and multiplication of functions descend to well-defined operations on the set of equivalence classes.
 - (b) Show that \mathcal{O}_p has a unique maximal ideal, and that this ideal is generated by the equivalence class of the function f(z) = (z p).
- (C13) Suppose f(z) and g(z) are entire functions such that |f(z)| < |g(z)| for all z. Show that f is a constant multiple of g.
- (C14) Let f(z) be an analytic function with $f'(0) \neq 0$.
 - (a) Show that there is a unique Möbius transformation A(z) satisfying

$$A(0) = f(0)$$

 $A'(0) = f'(0)$
 $A''(0) = f''(0)$

- (b) Let $g(z) = A^{-1}(f(z))$. Show that g(0) = 0, g'(0) = 1, and g''(0) = 0. Calcluate g'''(0).
- (C15) Develop a Poisson integral formula for extending a piecewise continuous function on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ to a harmonic function on the domain $\frac{x^2}{a^2} + \frac{y^2}{b^2} < 1$. (Use the parameterization $\gamma(t) = a\cos(t) + b\sin(t)$.)
- (C16) Let $C \subset [0, 1]$ denote the standard middle-third Cantor set. Suppose that f is a bounded analytic function on $\Omega \setminus C$, where Ω is a region containing [0, 1]. Show that f extends to an analytic function on Ω .
- (C17) Suppose A(x) is a polynomial. Show that the power series

$$f(z) = \sum_{n \ge 0} A(n) z^n$$

converges on |z| < 1 to a rational function of z.

(C18) Let f be an analytic function on a region Ω with $f'(z) \neq 0$ for all $z \in \Omega$. The Schwarzian derivative of f is the function

$$S_f(z) = \frac{f'''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$$

- (a) The nonlinearity of f is the function $N_f(z) = \frac{f''(z)}{f'(z)}$. Show that $S_f(z) = N_f'(z) \frac{1}{2}N_f(z)^2$.
- (b) Show that $S_f(z) \equiv 0$ if and only if f is the restriction of a Möbius transformation to Ω .
- (c) Suppose A is a Möbius transformation. Show that $S_{A \circ f}(z) = S_f(z)$.