Math 442 / David Dumas / Fall 2010 Midterm Solutions

(1) Prove that if two regular surfaces intersect at only one point, then they have the same tangent plane at that point. (That is, if $S_1 \cap S_2 = \{p\}$ then $T_pS_1 = T_pS_2$.)

Solution. It is enough to show that if two regular surfaces S_1, S_2 intersect at p and $T_pS_1 \neq T_pS_2$, then the set $S_1 \cap S_2$ contains more than one point. In fact we will show that $S_1 \cap S_2$ contains a curve through p.

For i = 1, 2, represent S_i in a neighborhood of p as $\{(x, y, z) | f_i(x, y, z) = 0\}$ where f_i is a differentiable function with 0 as a regular value (so in particular $\nabla f_i(p) \neq 0$).

The tangent plane of S_i at p is the plane through p with normal vector $\nabla f_i(p)$. Since the tangent planes are different, the vectors $\nabla f_1(p)$ and $\nabla f_2(p)$ are linearly independent.

Let $f_3(x, y, z)$ be a differentiable function defined in a neighborhood of p such that $f_3(p) = 0$ and $\{\nabla f_1(p), \nabla f_2(p), \nabla f_3(p)\}$ is a basis of \mathbb{R}^3 . (For example, complete the linearly independent set $\{\nabla f_1(p), \nabla f_2(p)\}$ to a basis by adding a vector v, and then let $f_3(q) = (p-q) \cdot v$.)

Define $F(x, y, z) = (f_1(x, y, z), f_2(x, y, z), f_3(x, y, z))$. Then F(p) = 0 and the rows of dF_p are linearly independent, so by the inverse function theorem F is a diffeomorphism from a neighborhood of p to a neighborhood of (0, 0, 0). Let G denote the inverse of this map. Then for all $t \in \mathbb{R}$ with |t| sufficiently small, G(0, 0, t) is defined and lies on both S_1 and S_2 (since $f_i(G(0, 0, t)) = 0$ for i = 1, 2). Since G is a diffeomorphism, all of the points obtained this way are distinct. This shows that $S_1 \cap S_2$ is infinite.

Comment. The intuition behind this solution is the following: Two distinct planes through a point p in \mathbb{R}^3 intersect in a line. Locally, regular surfaces are well-approximated like their tangent planes, so if $T_pS_1 \neq T_pS_2$, then $S_1 \cap S_2$ is approximately a line. In fact, $S_1 \cap S_2$ is a regular curve near p whose tangent line at p is $T_pS_1 \cap T_pS_2$.

(2) Determine the set of all positive real numbers A such that the equation

$$(x+y+z)^3 = A(x^3+y^3+z^3)$$

defines a regular surface in $\mathbb{R}^3 - \{(0,0,0)\}.$

Solution. Let $F(x, y, z) = (x + y + z)^3 - A(x^3 + y^3 + z^3)$. We want to know when $F^{-1}(0)$ is a regular surface in $\mathbb{R}^3 - \{(0, 0, 0)\}$. Note that F is symmetric in x, y, and z. We first determine the critical points of F. We have

$$\frac{\partial F}{\partial x} = 3 \left[(x+y+z)^2 - Ax^2 \right]$$
$$\frac{\partial F}{\partial y} = 3 \left[(x+y+z)^2 - Ay^2 \right]$$
$$\frac{\partial F}{\partial z} = 3 \left[(x+y+z)^2 - Az^2 \right]$$

so critical points are defined by $x^2 = y^2 = z^2 = \frac{1}{A}(x+y+z)^2$. In particular, x, y, and z are equal up to sign at any critical point.

Consider the case x = y = z = s. In order for this to be a critical point we must have $As^2 = (3s)^2$, so when $A \neq 9$, the only critical point on this line is (0, 0, 0). If however A = 9, then every point on the line x = y = z is critical.

Now consider x = y = -z = s. In order for this to be a critical point we must have $As^2 = (s + s - s)^2 = s^2$, so when $A \neq 1$ the only critical point on this line is (0, 0, 0). If however A = 1, then every point on the line x = y = -z is critical.

By symmetry we get a similar conclusion for the cases x = -y = z and -x = y = z, and to summarize:

- If $A \notin \{1, 9\}$, then F has no critical points other than (0, 0, 0).
- If A = 9, then the critical set of F is the line x = y = z.
- If A = 1, then the critical set of F is the union of the three lines x = y = -z, x = -y = z, -x = y = z.

We immediately conclude that for $A \notin \{1, 9\}$, zero is a regular value of F(x, y, z) on $\mathbb{R}^3 - \{(0, 0, 0)\}$ and F = 0 defines a regular surface. It remains to analyze the cases A = 1 and A = 9 separately.

Case A = 1: We have

$$F(x, y, z) = (x + y + z)^3 - x^3 - y^3 - z^3$$

= $3x^2y + 3xy^2 + 3x^2z + 3y^2z + 3xz^2 + 3yz^2 + 6xyz$
= $3(x + y)(x + z)(y + z)$

So $F^{-1}(0)$ is the union of three distinct planes that meet at (0,0,0). This is not a regular surface, because near a line of intersection of two of these planes (say, in an arbitrarily small neighborhood of (1,-1,0)) the set does not project injectively onto any of the coordinate planes.

Case A = 9: Suppose $S = F^{-1}(0)$ were a regular surface in $\mathbb{R}^3 - \{(0, 0, 0)\}$. In this case $F(s, s, s) = (3s)^3 - 9(3s^3) = 0$ so the entire line $\ell = \{(x, y, z) \mid x = y = z\}$ is contained in S. Therefore at any point $p \in \ell$, the tangent plane T_pS must contain ℓ . The cyclic permutation $(x, y, z) \mapsto (y, z, x)$ rotates \mathbb{R}^3 around ℓ by angle $2\pi/3$, but this permutation does not affect the value of F so it preserves S and fixes every point of ℓ . Therefore, the tangent plane to S at $p \in \ell$ must be invariant under this rotation.

Since no plane in \mathbb{R}^3 containing ℓ is invariant under rotation by $2\pi/3$ around ℓ , this is a contradiction, and S is not a regular surface.

Summary. The equation $(x + y + z)^3 = A(x^3 + y^3 + z^3)$ defines a regular surface in $\mathbb{R}^3 - \{(0, 0, 0)\}$ for all real numbers A except A = 1 and A = 9.

(3) (a) Define the torsion function τ of a space curve.

Solution. Parameterize the curve by arc length and let $t(s) = \alpha'(s)$, n(s) = t'(s)/|t'(s)|, and $b(s) = t(s) \wedge n(s)$. Then the torsion $\tau(s)$ is the real-valued function such that $b'(s) = \tau(s)n(s)$ for all s.

(b) Let $\alpha : I \to \mathbb{R}^3$ denote a regular parameterized space curve without inflection points. Show that $\alpha(I)$ lies in a plane if and only if the torsion of α is identically zero.

Solution. If the curve lies in a plane P, then all of its derivatives are parallel to that plane. Therefore t(s) and n(s) are parallel to P, hence they span it, and b(s) is a unit normal vector to P. There are two such unit normals, but by continuity,

b(s) can only assume one of these values. So b(s) is a constant function, and b'(s) = 0. This gives $\tau(s) = 0$.

Conversely, suppose the torsion is identically zero. Then b(s) is a constant function; let N denote its value. Then for all s, we have $t(s) \cdot N = n(s) \cdot N = 0$. Consider the real-valued function $f(s) = (\alpha(s) - \alpha(s_0)) \cdot N$. Then $f(s_0) = 0$ and using $t(s) \cdot N = 0$ gives f'(s) = 0. Therefore the function f(s) is identically zero, which shows that α is contained in the plane $\{p \mid (p - \alpha(s_0)) \cdot N = 0\}$.

(4) (a) Define the curvature function κ of a plane curve.

Solution. Parameterize the curve by arc length and let $t(s) = \alpha'(s)$. Define n(s) to be the unit vector such that $t(s) \cdot n(s) = 0$ and so that the ordered basis (t(s), n(s)) is positively oriented. Then the curvature $\kappa(s)$ is the real-valued function such that $t'(s) = \kappa(s)n(s)$.

(b) Determine the curvature function of the *cycloid*

$$\alpha(t) = (at - b\sin(t), a - b\cos(t))$$

where $a, b \in \mathbb{R}$ are constants and $a \neq 0$.

Solution. Note that the given curve is not parameterized by arc length. Up to sign the curvature is given by

$$\frac{|\alpha'(t) \wedge \alpha''(t)|}{|\alpha'(t)|^3}.$$

The correct sign (taking into account the definition of curvature for a plane curve) is given by replacing the numerator with det $\begin{pmatrix} \alpha'(t) \\ \alpha''(t) \end{pmatrix}$. We calculate:

$$\alpha'(t) = (a - b\cos(t), b\sin(t))$$
$$\alpha''(t) = (b\sin(t), b\cos(t))$$
$$|\alpha'(t)|^2 = a^2 + b^2 - 2ab\cos(t)$$
$$\det \begin{pmatrix} \alpha'(t) \\ \alpha''(t) \end{pmatrix} = b(a\cos(t) - b)$$

and therefore

$$\kappa(t) = \frac{b(a\cos(t) - b)}{(a^2 + b^2 - 2ab\cos(t))^{3/2}}$$

Note that if a = b, the curvature is not defined for $t \in 2\pi\mathbb{Z}$.

A = 1.5

 $\mathbf{A} = \mathbf{6}$

A = 8

A = 8.9

The surface $(x + y + z)^3 = A(x^3 + y^3 + z^3)$ for several values of A.

Several cycloids.