
Math 442 / David Dumas / Fall 2010

Midterm Solutions

(1) Prove that if two regular surfaces intersect at only one point, then they have the same
tangent plane at that point. (That is, if S1 ∩ S2 = {p} then TpS1 = TpS2.)

Solution. It is enough to show that if two regular surfaces S1, S2 intersect at p and
TpS1 6= TpS2, then the set S1 ∩ S2 contains more than one point. In fact we will show
that S1 ∩ S2 contains a curve through p.

For i = 1, 2, represent Si in a neighborhood of p as {(x, y, z) | fi(x, y, z) = 0} where
fi is a differentiable function with 0 as a regular value (so in particular ∇fi(p) 6= 0).

The tangent plane of Si at p is the plane through p with normal vector ∇fi(p).
Since the tangent planes are different, the vectors ∇f1(p) and ∇f2(p) are linearly
independent.

Let f3(x, y, z) be a differentiable function defined in a neighborhood of p such that
f3(p) = 0 and {∇f1(p),∇f2(p),∇f3(p)} is a basis of R3. (For example, complete the
linearly independent set {∇f1(p),∇f2(p)} to a basis by adding a vector v, and then
let f3(q) = (p− q) · v.)

Define F (x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)). Then F (p) = 0 and the rows
of dFp are linearly independent, so by the inverse function theorem F is a diffeomor-
phism from a neighborhood of p to a neighborhood of (0, 0, 0). Let G denote the inverse
of this map. Then for all t ∈ R with |t| sufficiently small, G(0, 0, t) is defined and lies
on both S1 and S2 (since fi(G(0, 0, t)) = 0 for i = 1, 2). Since G is a diffeomorphism,
all of the points obtained this way are distinct. This shows that S1 ∩ S2 is infinite.

Comment. The intuition behind this solution is the following: Two distinct planes
through a point p in R3 intersect in a line. Locally, regular surfaces are well-approximated
like their tangent planes, so if TpS1 6= TpS2, then S1 ∩ S2 is approximately a line. In
fact, S1 ∩ S2 is a regular curve near p whose tangent line at p is TpS1 ∩ TpS2.

(2) Determine the set of all positive real numbers A such that the equation

(x+ y + z)3 = A
(
x3 + y3 + z3

)
defines a regular surface in R3 − {(0, 0, 0)}.

Solution. Let F (x, y, z) = (x + y + z)3 − A(x3 + y3 + z3). We want to know when
F−1(0) is a regular surface in R3 − {(0, 0, 0)}. Note that F is symmetric in x, y, and
z. We first determine the critical points of F . We have

∂F

∂x
= 3

[
(x+ y + z)2 −Ax2

]
∂F

∂y
= 3

[
(x+ y + z)2 −Ay2

]
∂F

∂z
= 3

[
(x+ y + z)2 −Az2

]
so critical points are defined by x2 = y2 = z2 = 1

A(x+ y+ z)2. In particular, x, y, and
z are equal up to sign at any critical point.



Consider the case x = y = z = s. In order for this to be a critical point we must
have As2 = (3s)2, so when A 6= 9, the only critical point on this line is (0, 0, 0). If
however A = 9, then every point on the line x = y = z is critical.

Now consider x = y = −z = s. In order for this to be a critical point we must have
As2 = (s+ s− s)2 = s2, so when A 6= 1 the only critical point on this line is (0, 0, 0).
If however A = 1, then every point on the line x = y = −z is critical.

By symmetry we get a similar conclusion for the cases x = −y = z and −x = y = z,
and to summarize:
• If A /∈ {1, 9}, then F has no critical points other than (0, 0, 0).
• If A = 9, then the critical set of F is the line x = y = z.
• If A = 1, then the critical set of F is the union of the three lines x = y = −z,
x = −y = z, −x = y = z.

We immediately conclude that for A /∈ {1, 9}, zero is a regular value of F (x, y, z) on
R3 − {(0, 0, 0)} and F = 0 defines a regular surface. It remains to analyze the cases
A = 1 and A = 9 separately.

Case A = 1: We have

F (x, y, z) = (x+ y + z)3 − x3 − y3 − z3

= 3x2y + 3xy2 + 3x2z + 3y2z + 3xz2 + 3yz2 + 6xyz

= 3(x+ y)(x+ z)(y + z)

So F−1(0) is the union of three distinct planes that meet at (0, 0, 0). This is not a
regular surface, because near a line of intersection of two of these planes (say, in an
arbitrarily small neighborhood of (1,−1, 0)) the set does not project injectively onto
any of the coordinate planes.

Case A = 9: Suppose S = F−1(0) were a regular surface in R3 − {(0, 0, 0)}. In this
case F (s, s, s) = (3s)3 − 9(3s3) = 0 so the entire line ` = {(x, y, z) | x = y = z} is
contained in S. Therefore at any point p ∈ `, the tangent plane TpS must contain `.
The cyclic permutation (x, y, z) 7→ (y, z, x) rotates R3 around ` by angle 2π/3, but
this permutation does not affect the value of F so it preserves S and fixes every point
of `. Therefore, the tangent plane to S at p ∈ ` must be invariant under this rotation.

Since no plane in R3 containing ` is invariant under rotation by 2π/3 around `, this
is a contradiction, and S is not a regular surface.

Summary. The equation (x+ y + z)3 = A(x3 + y3 + z3) defines a regular surface in
R3 − {(0, 0, 0)} for all real numbers A except A = 1 and A = 9.

(3) (a) Define the torsion function τ of a space curve.

Solution. Parameterize the curve by arc length and let t(s) = α′(s), n(s) =
t′(s)/|t′(s)|, and b(s) = t(s) ∧ n(s). Then the torsion τ(s) is the real-valued
function such that b′(s) = τ(s)n(s) for all s.

(b) Let α : I → R3 denote a regular parameterized space curve without inflection
points. Show that α(I) lies in a plane if and only if the torsion of α is identically
zero.

Solution. If the curve lies in a plane P , then all of its derivatives are parallel to
that plane. Therefore t(s) and n(s) are parallel to P , hence they span it, and b(s)
is a unit normal vector to P . There are two such unit normals, but by continuity,



b(s) can only assume one of these values. So b(s) is a constant function, and
b′(s) = 0. This gives τ(s) = 0.

Conversely, suppose the torsion is identically zero. Then b(s) is a constant func-
tion; let N denote its value. Then for all s, we have t(s) · N = n(s) · N = 0.
Consider the real-valued function f(s) = (α(s)− α(s0)) ·N . Then f(s0) = 0 and
using t(s) ·N = 0 gives f ′(s) = 0. Therefore the function f(s) is identically zero,
which shows that α is contained in the plane {p | (p− α(s0)) ·N = 0}.

(4) (a) Define the curvature function κ of a plane curve.

Solution. Parameterize the curve by arc length and let t(s) = α′(s). Define
n(s) to be the unit vector such that t(s) · n(s) = 0 and so that the ordered
basis (t(s), n(s)) is positively oriented. Then the curvature κ(s) is the real-valued
function such that t′(s) = κ(s)n(s).

(b) Determine the curvature function of the cycloid

α(t) = (at− b sin(t), a− b cos(t))

where a, b ∈ R are constants and a 6= 0.

Solution. Note that the given curve is not parameterized by arc length. Up to
sign the curvature is given by

|α′(t) ∧ α′′(t)|
|α′(t)|3

.

The correct sign (taking into account the definition of curvature for a plane curve)

is given by replacing the numerator with det

(
α′(t)
α′′(t)

)
. We calculate:

α′(t) = (a− b cos(t), b sin(t))

α′′(t) = (b sin(t), b cos(t))

|α′(t)|2 = a2 + b2 − 2ab cos(t)

det

(
α′(t)
α′′(t)

)
= b(a cos(t)− b)

and therefore

κ(t) =
b(a cos(t)− b)

(a2 + b2 − 2ab cos(t))3/2
.

Note that if a = b, the curvature is not defined for t ∈ 2πZ.



The surface (x+ y + z)3 = A(x3 + y3 + z3) for several values of A.

Several cycloids.


