Math 442 / David Dumas / Fall 2010

Midterm Solutions

(1) Prove that if two regular surfaces intersect at only one point, then they have the same
tangent plane at that point. (That is, if S; NSy = {p} then T}, = T},55.)

Solution. It is enough to show that if two regular surfaces Sp, S92 intersect at p and
T,51 # 1,52, then the set S1 NSy contains more than one point. In fact we will show
that S1 NSy contains a curve through p.

For i = 1,2, represent S; in a neighborhood of p as {(x,y, z) | fi(z,y,z) = 0} where
fi is a differentiable function with 0 as a regular value (so in particular V f;(p) # 0).

The tangent plane of S; at p is the plane through p with normal vector V f;(p).
Since the tangent planes are different, the vectors V fi(p) and V fa(p) are linearly
independent.

Let f3(z,y, z) be a differentiable function defined in a neighborhood of p such that
f3(p) = 0 and {V f1(p), Vf2(p), Vf3(p)} is a basis of R3. (For example, complete the
linearly independent set {V fi1(p), V f2(p)} to a basis by adding a vector v, and then
let f3(¢) = (p—q) -v.)

Define F(.f, Y, Z) = (fl(xa Y, Z), f2($7 Y, Z)v f3($7 Y, Z)) Then F(p) = 0 and the rows
of dF), are linearly independent, so by the inverse function theorem F' is a diffeomor-
phism from a neighborhood of p to a neighborhood of (0,0, 0). Let G denote the inverse
of this map. Then for all ¢ € R with [t| sufficiently small, G(0,0,¢) is defined and lies
on both S; and Ss (since f;(G(0,0,t)) =0 for i = 1,2). Since G is a diffeomorphism,
all of the points obtained this way are distinct. This shows that S1 N .Sy is infinite.

Comment. The intuition behind this solution is the following: Two distinct planes
through a point p in R? intersect in a line. Locally, regular surfaces are well-approximated
like their tangent planes, so if 1,51 # T,S2, then S1 N Sy is approximately a line. In
fact, S1 N S2 is a regular curve near p whose tangent line at p is 7,51 N1, 5.

(2) Determine the set of all positive real numbers A such that the equation
(z+y+2)? =A% +y>+2%)
defines a regular surface in R — {(0,0,0)}.
Solution. Let F(z,y,z2) = (v +y + 2)3 — A(2® + y> + 2%). We want to know when

F~10) is a regular surface in R? — {(0,0,0)}. Note that F is symmetric in z, y, and
z. We first determine the critical points of F. We have
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so critical points are defined by 22 = y? = 22 = %(x + 1+ 2)2. In particular, z, y, and
z are equal up to sign at any critical point.



Consider the case x = y = z = s. In order for this to be a critical point we must
have As? = (3s)2, so when A # 9, the only critical point on this line is (0,0,0). If
however A =9, then every point on the line z = y = z is critical.

Now consider £ = y = —z = s. In order for this to be a critical point we must have
As? = (s+ s —s)? = 52, so when A # 1 the only critical point on this line is (0,0, 0).
If however A = 1, then every point on the line z = y = —z is critical.

By symmetry we get a similar conclusion for the cases x = —y = z and —x =y = z,
and to summarize:

o If A ¢ {1,9}, then F has no critical points other than (0,0,0).

o If A =9, then the critical set of F' is the line z =y = z.

e If A =1, then the critical set of I’ is the union of the three lines x = y = —z,

rT=—y=2z,—x=Yy=2.

We immediately conclude that for A ¢ {1,9}, zero is a regular value of F(z,y, z) on
R3 — {(0,0,0)} and F = 0 defines a regular surface. It remains to analyze the cases
A =1 and A =9 separately.

Case A = 1: We have
F(z,y,2) = (x4+y+2)7>—a®—y>— 2
= 322y + 3xy? + 3222 + 3y%2 + 3222 + 3yz? + 6ayz
=3z +y)(z+2)(y+2)

So F~1(0) is the union of three distinct planes that meet at (0,0,0). This is not a
regular surface, because near a line of intersection of two of these planes (say, in an
arbitrarily small neighborhood of (1,—1,0)) the set does not project injectively onto
any of the coordinate planes.

Case A = 9: Suppose S = F~1(0) were a regular surface in R? — {(0,0,0)}. In this
case F(s,s,5) = (35)® — 9(3s3) = 0 so the entire line £ = {(z,y,2) |r =y = 2} is
contained in S. Therefore at any point p € ¢, the tangent plane 7,5 must contain /.
The cyclic permutation (z,y, z) + (y,z, ) rotates R? around ¢ by angle 27/3, but
this permutation does not affect the value of F' so it preserves S and fixes every point
of . Therefore, the tangent plane to S at p € £ must be invariant under this rotation.

Since no plane in R3 containing ¢ is invariant under rotation by 27 /3 around ¢, this
is a contradiction, and S is not a regular surface.
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Summary. The equation (x + y + 2)3 = A(23 + 3 + 23) defines a regular surface in
R3 — {(0,0,0)} for all real numbers A except A=1and A = 9.

(3) (a) Define the torsion function 7 of a space curve.

Solution. Parameterize the curve by arc length and let t(s) = o/(s), n(s) =
t'(s)/|t'(s)], and b(s) = t(s) A n(s). Then the torsion 7(s) is the real-valued
function such that ¥'(s) = 7(s)n(s) for all s.

(b) Let « : I — R? denote a regular parameterized space curve without inflection
points. Show that «(I) lies in a plane if and only if the torsion of « is identically
Zero.

Solution. If the curve lies in a plane P, then all of its derivatives are parallel to
that plane. Therefore ¢(s) and n(s) are parallel to P, hence they span it, and b(s)
is a unit normal vector to P. There are two such unit normals, but by continuity,



b(s) can only assume one of these values. So b(s) is a constant function, and

b'(s) = 0. This gives 7(s) = 0.

Conversely, suppose the torsion is identically zero. Then b(s) is a constant func-
tion; let NV denote its value. Then for all s, we have t(s) - N = n(s) - N = 0.
Consider the real-valued function f(s) = (a(s) — a(so)) - N. Then f(sp) =0 and
using t(s) - N = 0 gives f’(s) = 0. Therefore the function f(s) is identically zero,
which shows that « is contained in the plane {p | (p — a(so)) - N = 0}.

Define the curvature function x of a plane curve.

Solution. Parameterize the curve by arc length and let ¢(s) = o/(s). Define
n(s) to be the unit vector such that ¢(s) - n(s) = 0 and so that the ordered
basis (t(s),n(s)) is positively oriented. Then the curvature x(s) is the real-valued
function such that ¢'(s) = k(s)n(s).

Determine the curvature function of the cycloid
a(t) = (at — bsin(t),a — bcos(t))

where a,b € R are constants and a # 0.

Solution. Note that the given curve is not parameterized by arc length. Up to
sign the curvature is given by

[o/(t) A "(2)]
o/ (£

The correct sign (taking into account the definition of curvature for a plane curve)

/
is given by replacing the numerator with det <g,,((?)>. We calculate:

o' (t) = (a — beos(t), bsin(t))
o (t) = (bsin(t), beos(t))
o ())? = a® + b* — 2abcos(t)

det <O‘,/,((?)> b(a cos(t) — b)

Q

and therefore
b(acos(t) —b)

t) = .
~(t) (a% + b2 — 2abcos(t))3/2
Note that if @ = b, the curvature is not defined for t € 27Z.




A=8.9 A=9 A=12
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The surface (z +y + 2)3 = A(2® + 3y + 23) for several values of A.
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Several cycloids.



