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Note: There is no guarantee that this outline is exhaustive, though I have tried to include all of
the topics we discussed. In preparing for the midterm, you should also study your notes and the
assigned reading.

(1) Curves (local theory)

(a) A parameterized curve α : I → Rn is regular if |α′(t)| 6= 0 for all t ∈ I. (We mostly
consider n=2,3.)

(b) Review of basic notions from multivariable calculus:
(i) Differentiability for vector-valued functions
(ii) Arc length of a parameterized curve
(iii) Existence of parameterization by arc length

(c) The vector product of u and v is the vector u ∧ v such that 〈u ∧ v, w〉 = det(u v w).
(d) The Frenet frame of a curve α(s) parameterized by arc length is the triple (t, n, b)

where
(i) The (unit) tangent vector is t(s) = α′(s)/|α′(s)|
(ii) The (unit) normal vector is n(s) = t′(s)/|t′(s)|
(iii) The (unit) binormal vector is b(s) = t(s) ∧ n(s)

(e) This frame obeys the Frenet equations
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where κ(s) = |α′(s)| is the curvature and τ = ±|n′(s)| is the torsion.

(f) Special case: If α : I → R2 is a plane curve, we modify the definitions slightly.
(i) The unit normal n(s) is the vector orthogonal to t(s) such that (t, n) is a

positive frame for R2.
(ii) The (signed) curvature is the real number κ(s) such that t′(s) = κ(s)n(s).

(g) The fundamental theorem of the local theory of space curves: For any pair of functions
κ, τ with κ > 0 there is a parameterized curve α : I → R3 with curvature κ and
torsion τ . Furthermore, the resulting curve is unique up to an isometry of R3, i.e. if
α and β have the same curvature and torsion and if the curvature is everywhere
positive, then

α(s) = A · β(s) + v

for some orthogonal matrix A and vector v ∈ R3.
(h) The fundamental theorem follows from the isometry invariance of κ, τ and the exis-

tence and uniqueness of solutions to ODE with a given initial condition.
(i) Osculation

(i) The osculating plane is span(t(s), n(s)).
(ii) The osculating circle is the circle in the osculating plane with radius 1/κ(s)

centered at α(s) + (1/κ(s))n(s). It is tangent to the curve at α(s) and it has
the same curvature as α at that point.

(j) A curve is planar if and only if τ(s) ≡ 0.
(k) A planar curve is a circle if and only if κ is constant and nonzero.



(2) Plane curves

(a) Crofton’s formula and integral geometry.
(i) The space of lines in the plane (denoted L ) can be parameterized by pairs

(p, θ) where p is the orthogonal distance from a line to (0, 0) and θ is the
angular coordinate of the point realizing this distance.

(ii) Formally, L is the quotient of R2 by the equivalence relation generated by
• (p, θ) ∼ (−p, θ + π) for all p, θ ∈ R.
• (0, θ) ∼ (0, θ′) for all θ, θ′ ∈ R.

(iii) Natural measure. An isometry of R2 takes lines to lines, and thus induces a
map L → L . The measure dpdθ is invariant under these maps.

(iv) If C is a regular curve in R2, let NC(p, θ) denote the number of points of
intersection of C with the (p, θ)-line (when this intersection is finite).

(v) Crofton’s formula: If C is a regular curve of length ` then∫∫
L
NC(p, θ) dpdθ = 2`

(vi) Part of the Crofton theorem is that the function NC is integrable, e.g. that lines
intersecting C in infinitely many points account for a set of zero dpdθ-measure.

(vii) If Ω ⊂ R2 is an open set bounded by a finite union of regular closed curves, let
mΩ(p, θ) denote the total length of the intervals of intersection of Ω and the
(p, θ) line.

(viii) Generalized Crofton formula: If a set Ω as above has area A, then∫∫
L
mΩ(p, θ)dpdθ = πA

(b) The isoperimetric inequality
(i) Let Ω be an open set in R2 bounded by a closed regular curve C, where Ω has

area A and C has length L. Then

L2 ≥ 4πA.

Furthermore, if L2 = 4πA then C is a circle.
(ii) Corollary: The circle minimizes perimeter among curves enclosing a fixed area.
(iii) Corollary: The circle maximizes enclosed area among curves with a fixed

length.
(iv) One proof of the isoperimetric inequality uses Crofton’s formula to show that

the integral of a certain positive real-valued function on L ×L is a positive
multiple of L2 − 4πA.

(3) Surfaces

(a) Definition of a regular surface: A subset S ∈ R3 such that for each p ∈ S there is a
neighborhood V in R3 and a map X : U → V ∩S, where U ⊂ R2 is open, satisfying:

(i) X is differentiable
(ii) X is a homeomorphism
(iii) X is an immersion, i.e. for each q ∈ U , the differential dXq is injective.

(b) Equivalent definitions: Locally, a regular surface is
(i) The graph of a differentiable function over one of the coordinate planes xy, xz,

or yz.
(ii) The graph of a differentiable function over some plane in R3.
(iii) The inverse image of a regular value of a differentiable function F (x, y, z).



(iv) The image of the xy plane under a diffeomorphism from an open set in R3 to
R3.

(c) Parameterizations: A differentiable map X : U → R3 with injective differential at
every point is a immersion or a regular parameterized surface; after restricting to a
sufficiently small open set V ⊂ U , the image is a regular surface. In other words,
the image of an immersion is locally regular.

(d) The inverse function theorem: If φ : U → V is a differentiable map and if dφp
is an isomorphism (⇔ the matrix of partial derivatives at p is invertible), then
φ is a diffeomorphism near p, i.e. there exists a neighborhood U ′ of p such that
φ : U ′ → V ′ = φ(U ′) is a diffeomorphism.

(e) General philosophy: Many ideas from multivariable calculus can be generalized to
regular surfaces. Often the generalization is defined like this: Use local coordinates
to move everything into R2, then apply the usual definition for functions of two
variables.

(f) Differentiable functions on surfaces.
(i) A function f : S → R on a regular surface can be locally expressed as f(u, v),

where (u, v) are local coordinates on S near a point p = (u0, v0).
(ii) If f(u, v) is differentiable (in the multivariable calculus sense) at (u0, v0), then

we say f is differentiable at p.
(iii) This definition does not depend on the coordinate system, since a change of

coordinates is differentiable.
(iv) If f is differentiable at every point of S, then it is differentiable.

(g) Differentiable maps between surfaces.
(i) A continuous map φ : S1 → S2 between two regular surfaces can be locally

expressed as f(u, v) = (s(u, v), t(u, v)), where (u, v) are local coordinates on
S1 near p = (u0, v0) and (s, t) are local coordinates on S2 near φ(p).

(ii) If s(u, v) and t(u, v) are differentiable at p, then we say φ is differentiable at p.
(iii) If φ is differentiable at every point of S1, then φ is differentiable.

(h) Tangent plane. If X(u, v) is a local parameterization of S, then the span of Xu and
Xv at a point p is the tangent plane of S at p, denoted TpS.

(i) An alternate definition of the tangent plane: Consider the set of all curves in S that
pass through p. The set consisting of their tangent vectors at p is TpS.

(j) Differential. A differentiable map φ : S1 → S2 induces a linear map dφp : TpS1 →
Tφ(p)S2, the differential of φ at p. In local coordinates (u, v) near p and (s, t) near
φ(p), we can write φ(u, v) = (s(u, v), t(u, v)). Then the differential has matrix

dφp =

(
∂s
∂u(p) ∂s

∂v (p)
∂t
∂u(p) ∂t

∂v (p)

)
.

(k) The inverse function theorem for surfaces. If φ : S1 → S2 is a differentiable map
and dφp is an isomorphism, then φ is a diffeomorphism near p, i.e. there exists a
neighborhood U ′ of p such that φ : U ′ → V ′ = φ(U ′) is a diffeomorphism.

(l) A map φ : S1 → S2 whose differential is an isomorphism at every point need not be
injective or surjective.
Examples:
• The inclusion of a small disk by a coordinate chart (not surjective).
• The plane mapping to the torus by a doubly-periodic parameterization function

(not injective).
(m) Some examples of regular surfaces:

• A graph z = f(x, y).
• Inverse image of a regular value {(x, y, z) | F (x, y, z) = c}.
• Surface of revolution. Rotate a plane curve β(t) around a line, use t and

rotation angle θ as parameters.



• The surface of revolution of a circle that does not intersect the axis is a circular
torus.
• A surface that contains a line segment through each of its point is ruled. Such

a surface can be parameterized by X(s, t) = α(s) + tβ(s) where α is a space
curve and β is a nonzero vector-valued function.
• Surface of tangents. X(s, t) = α(s) + tα′(s) where α is a space curve parame-

terized by arc length. This surface is ruled.
• Tubes. Let X(s, θ) = α(s)+ε cos(θ)n(s)+ε sin(θ)b(s), where α is a space curve

with unit normal n and unit tangent t, and ε > 0 is the tube radius.
• The cone on the space curve α(t) is parameterized by X(s, t) = tα(s).

(n) Some examples of diffeomorphisms:
• If S ⊂ R3 is a regular surface and F : R3 → R3 is a diffeomorphism of R3

that preserves S, i.e. F (S) = S, then the restriction of F is a diffeomorphism
F : S → S.
• A surface of revolution has a natural family of diffeomorphisms Rθ obtained

by rotating the surface by angle θ around its axis of symmetry.
• The map (x, y, 0) 7→ (x, y, f(x, y)) from a coordinate plane to the graph of a

differentiable function is a diffeomorphism.
• A local parameterization X : U → S of a regular surface is a diffeomorphism

from U to X(U).


