Math 442 - Differential Geometry of Curves and Surfaces Midterm Topic Outline

Version 1.0, 6th October 2010

David Dumas

Note: There is no guarantee that this outline is exhaustive, though I have tried to include all of the topics we discussed. In preparing for the midterm, you should also study your notes and the assigned reading.

(1) Curves (local theory)

- (a) A parameterized curve $\alpha : I \to \mathbb{R}^n$ is regular if $|\alpha'(t)| \neq 0$ for all $t \in I$. (We mostly consider n=2,3.)
- (b) Review of basic notions from multivariable calculus:
 - (i) Differentiability for vector-valued functions
 - (ii) Arc length of a parameterized curve
 - (iii) Existence of parameterization by arc length
- (c) The vector product of u and v is the vector $u \wedge v$ such that $\langle u \wedge v, w \rangle = det(u v w)$.
- (d) The *Frenet frame* of a curve $\alpha(s)$ parameterized by arc length is the triple (t, n, b) where
 - (i) The (unit) tangent vector is $t(s) = \alpha'(s)/|\alpha'(s)|$
 - (ii) The (unit) normal vector is n(s) = t'(s)/|t'(s)|
 - (iii) The (unit) binormal vector is $b(s) = t(s) \wedge n(s)$
- (e) This frame obeys the *Frenet equations*

$$\frac{d}{dt} \begin{pmatrix} t \\ n \\ b \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0 \end{pmatrix} \begin{pmatrix} t \\ n \\ b \end{pmatrix}$$

where $\kappa(s) = |\alpha'(s)|$ is the curvature and $\tau = \pm |n'(s)|$ is the torsion.

- (f) Special case: If $\alpha: I \to \mathbb{R}^2$ is a plane curve, we modify the definitions slightly.
 - (i) The unit normal n(s) is the vector orthogonal to t(s) such that (t, n) is a positive frame for \mathbb{R}^2 .
 - (ii) The (signed) curvature is the real number $\kappa(s)$ such that $t'(s) = \kappa(s)n(s)$.
- (g) The fundamental theorem of the local theory of space curves: For any pair of functions κ, τ with $\kappa > 0$ there is a parameterized curve $\alpha : I \to \mathbb{R}^3$ with curvature κ and torsion τ . Furthermore, the resulting curve is unique up to an isometry of \mathbb{R}^3 , i.e. if α and β have the same curvature and torsion and if the curvature is everywhere positive, then

$$\alpha(s) = A \cdot \beta(s) + v$$

for some orthogonal matrix A and vector $v \in \mathbb{R}^3$.

- (h) The fundamental theorem follows from the isometry invariance of κ, τ and the existence and uniqueness of solutions to ODE with a given initial condition.
- (i) Osculation
 - (i) The osculating plane is $\operatorname{span}(t(s), n(s))$.
 - (ii) The osculating circle is the circle in the osculating plane with radius $1/\kappa(s)$ centered at $\alpha(s) + (1/\kappa(s))n(s)$. It is tangent to the curve at $\alpha(s)$ and it has the same curvature as α at that point.
- (j) A curve is planar if and only if $\tau(s) \equiv 0$.
- (k) A planar curve is a circle if and only if κ is constant and nonzero.

(2) Plane curves

- (a) Crofton's formula and integral geometry.
 - (i) The space of lines in the plane (denoted \mathscr{L}) can be parameterized by pairs (p, θ) where p is the orthogonal distance from a line to (0, 0) and θ is the angular coordinate of the point realizing this distance.
 - (ii) Formally, \mathscr{L} is the quotient of \mathbb{R}^2 by the equivalence relation generated by • $(p, \theta) \sim (-p, \theta + \pi)$ for all $p, \theta \in \mathbb{R}$.
 - $(0, \theta) \sim (0, \theta')$ for all $\theta, \theta' \in \mathbb{R}$.
 - (iii) Natural measure. An isometry of \mathbb{R}^2 takes lines to lines, and thus induces a map $\mathscr{L} \to \mathscr{L}$. The measure $dpd\theta$ is invariant under these maps.
 - (iv) If \hat{C} is a regular curve in \mathbb{R}^2 , let $N_C(p,\theta)$ denote the number of points of intersection of C with the (p,θ) -line (when this intersection is finite).
 - (v) Crofton's formula: If C is a regular curve of length ℓ then

$$\iint_{\mathscr{L}} N_C(p,\theta) \, dp d\theta = 2\ell$$

- (vi) Part of the Crofton theorem is that the function N_C is integrable, e.g. that lines intersecting C in infinitely many points account for a set of zero $dpd\theta$ -measure.
- (vii) If $\Omega \subset \mathbb{R}^2$ is an open set bounded by a finite union of regular closed curves, let $m_{\Omega}(p,\theta)$ denote the total length of the intervals of intersection of Ω and the (p,θ) line.
- (viii) Generalized Crofton formula: If a set Ω as above has area A, then

$$\iint_{\mathscr{L}} m_{\Omega}(p,\theta) dp d\theta = \pi A$$

- (b) The isoperimetric inequality
 - (i) Let Ω be an open set in \mathbb{R}^2 bounded by a closed regular curve C, where Ω has area A and C has length L. Then

$$L^2 \ge 4\pi A.$$

Furthermore, if $L^2 = 4\pi A$ then C is a circle.

- (ii) Corollary: The circle minimizes perimeter among curves enclosing a fixed area.
- (iii) Corollary: The circle maximizes enclosed area among curves with a fixed length.
- (iv) One proof of the isoperimetric inequality uses Crofton's formula to show that the integral of a certain positive real-valued function on $\mathscr{L} \times \mathscr{L}$ is a positive multiple of $L^2 - 4\pi A$.

(3) Surfaces

- (a) Definition of a regular surface: A subset $S \in \mathbb{R}^3$ such that for each $p \in S$ there is a neighborhood V in \mathbb{R}^3 and a map $X : U \to V \cap S$, where $U \subset \mathbb{R}^2$ is open, satisfying:
 - (i) X is differentiable
 - (ii) X is a homeomorphism
 - (iii) X is an immersion, i.e. for each $q \in U$, the differential dX_q is injective.
- (b) Equivalent definitions: Locally, a regular surface is
 - (i) The graph of a differentiable function over one of the coordinate planes xy, xz, or yz.
 - (ii) The graph of a differentiable function over *some* plane in \mathbb{R}^3 .
 - (iii) The inverse image of a regular value of a differentiable function F(x, y, z).

- (iv) The image of the xy plane under a diffeomorphism from an open set in \mathbb{R}^3 to \mathbb{R}^3 .
- (c) Parameterizations: A differentiable map $X : U \to \mathbb{R}^3$ with injective differential at every point is a *immersion* or a *regular parameterized surface*; after restricting to a sufficiently small open set $V \subset U$, the image is a regular surface. In other words, the image of an immersion is locally regular.
- (d) The inverse function theorem: If $\phi : U \to V$ is a differentiable map and if $d\phi_p$ is an isomorphism (\Leftrightarrow the matrix of partial derivatives at p is invertible), then ϕ is a diffeomorphism near p, i.e. there exists a neighborhood U' of p such that $\phi : U' \to V' = \phi(U')$ is a diffeomorphism.
- (e) General philosophy: Many ideas from multivariable calculus can be generalized to regular surfaces. Often the generalization is defined like this: Use local coordinates to move everything into \mathbb{R}^2 , then apply the usual definition for functions of two variables.
- (f) Differentiable functions on surfaces.
 - (i) A function $f: S \to \mathbb{R}$ on a regular surface can be locally expressed as f(u, v), where (u, v) are local coordinates on S near a point $p = (u_0, v_0)$.
 - (ii) If f(u, v) is differentiable (in the multivariable calculus sense) at (u_0, v_0) , then we say f is differentiable at p.
 - (iii) This definition does not depend on the coordinate system, since a change of coordinates is differentiable.
- (iv) If f is differentiable at every point of S, then it is *differentiable*.
- (g) Differentiable maps between surfaces.
 - (i) A continuous map $\phi : S_1 \to S_2$ between two regular surfaces can be locally expressed as f(u, v) = (s(u, v), t(u, v)), where (u, v) are local coordinates on S_1 near $p = (u_0, v_0)$ and (s, t) are local coordinates on S_2 near $\phi(p)$.
 - (ii) If s(u, v) and t(u, v) are differentiable at p, then we say ϕ is differentiable at p.
 - (iii) If ϕ is differentiable at every point of S_1 , then ϕ is differentiable.
- (h) Tangent plane. If X(u, v) is a local parameterization of S, then the span of X_u and X_v at a point p is the tangent plane of S at p, denoted T_pS .
- (i) An alternate definition of the tangent plane: Consider the set of all curves in S that pass through p. The set consisting of their tangent vectors at p is T_pS .
- (j) Differential. A differentiable map $\phi : S_1 \to S_2$ induces a linear map $d\phi_p : T_pS_1 \to T_{\phi(p)}S_2$, the differential of ϕ at p. In local coordinates (u, v) near p and (s, t) near $\phi(p)$, we can write $\phi(u, v) = (s(u, v), t(u, v))$. Then the differential has matrix

$$d\phi_p = \begin{pmatrix} \frac{\partial s}{\partial u}(p) & \frac{\partial s}{\partial v}(p) \\ \frac{\partial t}{\partial u}(p) & \frac{\partial t}{\partial v}(p) \end{pmatrix}.$$

- (k) The inverse function theorem for surfaces. If $\phi : S_1 \to S_2$ is a differentiable map and $d\phi_p$ is an isomorphism, then ϕ is a diffeomorphism near p, i.e. there exists a neighborhood U' of p such that $\phi : U' \to V' = \phi(U')$ is a diffeomorphism.
- (1) A map $\phi: S_1 \to S_2$ whose differential is an isomorphism at every point need not be injective or surjective.

Examples:

- The inclusion of a small disk by a coordinate chart (not surjective).
- The plane mapping to the torus by a doubly-periodic parameterization function (not injective).
- (m) Some examples of regular surfaces:
 - A graph z = f(x, y).
 - Inverse image of a regular value $\{(x, y, z) | F(x, y, z) = c\}$.
 - Surface of revolution. Rotate a plane curve $\beta(t)$ around a line, use t and rotation angle θ as parameters.

- The surface of revolution of a circle that does not intersect the axis is a *circular* torus.
- A surface that contains a line segment through each of its point is *ruled*. Such a surface can be parameterized by $X(s,t) = \alpha(s) + t\beta(s)$ where α is a space curve and β is a nonzero vector-valued function.
- Surface of tangents. $X(s,t) = \alpha(s) + t\alpha'(s)$ where α is a space curve parameterized by arc length. This surface is ruled.
- Tubes. Let $X(s, \theta) = \alpha(s) + \epsilon \cos(\theta)n(s) + \epsilon \sin(\theta)b(s)$, where α is a space curve with unit normal n and unit tangent t, and $\epsilon > 0$ is the tube radius.
- The cone on the space curve $\alpha(t)$ is parameterized by $X(s,t) = t\alpha(s)$.
- (n) Some examples of diffeomorphisms:
 - If $S \subset \mathbb{R}^3$ is a regular surface and $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a diffeomorphism of \mathbb{R}^3 that preserves S, i.e. F(S) = S, then the restriction of F is a diffeomorphism $F: S \to S$.
 - A surface of revolution has a natural family of diffeomorphisms R_{θ} obtained by rotating the surface by angle θ around its axis of symmetry.
 - The map $(x, y, 0) \mapsto (x, y, f(x, y))$ from a coordinate plane to the graph of a differentiable function is a diffeomorphism.
 - A local parameterization $X: U \to S$ of a regular surface is a diffeomorphism from U to X(U).