Math 442 / Differential Geometry of Curves and Surfaces / David Dumas Challenge Problems

Version 2010-11-08

Please read the guidelines for submitting challenge problems in the course syllabus.

- (C1) Describe all curves on the unit sphere with constant torsion. Are any of them closed? (Hint: Begin with the case $\tau = 0$.)
- (C2) Let $\alpha : I \to \mathbb{R}^3$ be a differentiable curve parameterized by arc length, with curvature $\kappa_{\alpha}(s) \neq 0$ and torsion $\tau_{\alpha}(s)$. For each $s \in I$, let $\beta(s)$ denote the center of the osculating circle of α at $\alpha(s)$.
 - (a) Compute the speed $|\beta'(s)|$, curvature $\kappa_{\beta}(s)$, and torsion $\tau_{\beta}(s)$ of the curve β . (*Warning: s is not necessarily the arc length parameter for* β !)
 - (b) Find a particular curve α so that the new curve β is congruent to α , i.e. the two curves are related by a rotation and/or translation.
- (C3) (a) Let $\alpha : I \to \mathbb{R}^3$ be a differentiable curve that lies on the unit sphere (i.e. $|\alpha(s)| = 1$ for all $s \in I$). Show that $\kappa(s) \ge 1$ for all $s \in I$.
 - (b) Suppose instead that α lies on the ellipsoid $ax^2 + by^2 + cz^2 = 1$, where a, b, c > 0. What is the minimum possible value for the curvature?
- (C4) Let $\alpha : I \to R^2$ be a differentiable plane curve with positive, increasing curvature (i.e. $\kappa(s), \kappa'(s) > 0$).
 - (a) Show that the osculating circles of α are nested, meaning that if s' > s, then the osculating circle at $\alpha(s')$ is contained in the osculating circle at $\alpha(s)$.
 - (b) Show that it is impossible for all of the osculating circles to have a common center.
- (C5) A space curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ is bounded if there is a constant M such that $|\alpha(t)| < M$ for all $t \in \mathbb{R}$. Recall that a curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ of constant curvature and constant torsion is a helix and therefore is not bounded. Given any pair of constants K > 0 and $T \ge 0$, show that there are bounded space curves with almost constant curvature K and almost constant torsion T. More precisely, for any $\varepsilon > 0$, find a bounded space curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ such that for all t we have

$$K - \varepsilon < \kappa(t) < K + \varepsilon$$
 and $T - \varepsilon < \tau(t) < T + \varepsilon$.

- (C6) For a differentiable curve $\alpha : I \to \mathbb{R}^n$ parameterized by arc length, the Frenet frame is defined by applying the Gram-Schmidt orthonormalization procedure to the vectors $\alpha(s), \alpha'(s), \alpha''(s), \ldots, \alpha^{(n-1)}(s)$. This frame is only defined when these *n* vectors are linearly independent.
 - (a) Show that this is indeed a generalization of the Frenet frame that we defined for a curve in \mathbb{R}^3 , i.e. that applying the Gram-Schmidt process to $\alpha, \alpha', \alpha''$ gives t, n, b.
 - (b) Show that the Frenet equations for \mathbb{R}^n have a coefficient matrix whose only nonzero entries are immediately above and below the diagonal. (These coefficients generalize the curvature and torsion of a curve in \mathbb{R}^3 .)

(C7) There is a generalization of Crofton's formula of the following form: If U is a bounded open set in \mathbb{R}^3 , then

$$\operatorname{Volume}(U) = C \int_{\operatorname{Planes} P \subset \mathbb{R}^3} \operatorname{Area}(U \cap P) dP$$

where C is a constant that does not depend on U and dP is a measure on the space of all planes in \mathbb{R}^3 .

- (a) What is the dimension of the space of all planes in \mathbb{R}^3 ?
- (b) Introduce a coordinate system for the space of planes in \mathbb{R}^3 and find an isometry-invariant measure on this space. (This generalizes the measure $dpd\theta$ on the space of lines in the plane.)
- (c) By considering the open unit ball in \mathbb{R}^3 and the area of its intersection with a plane, calculate the constant C in this generalization of Crofton's formula.
- (C8) A short arc from a very large circle is nearly a straight line segment. Similarly, one might expect that if the curvature of a plane curve is not too large, then a sufficiently short piece of the curve will be "close" to a line segment. In this problem you will work toward justifying this intuition.

Let K and ε be positive real numbers satisfying $K\varepsilon < 1$. Suppose $\alpha : \mathbb{R} \to \mathbb{R}^2$ is a plane curve parameterized by arc length whose curvature satisfies $|\kappa(s)| < K$ for all s.

(a) Let $p = \alpha(0)$ and $q = \alpha(\varepsilon)$. Show that

$$\varepsilon \cos(K\varepsilon) \le |p-q| \le \varepsilon.$$

- (b) Let v = (q-p)/|q-p| and define $\beta(t) = p + \frac{t}{\varepsilon}v$. Note that $\beta(0) = \alpha(0)$ and $\beta(\varepsilon) = \alpha(\varepsilon)$. Find an upper bound for $|\alpha(t) \beta(t)|, t \in [0, \varepsilon]$, that depends only on K and ε and which tends to zero as $K\varepsilon \to 0$.
- (C9) Let α be a simple closed curve in the plane. Define the *isoperimetric ratio* of α as the positive real number

$$r(\alpha) = \frac{L(\alpha)^2}{A(\alpha)}$$

where $L(\alpha)$ and $A(\alpha)$ are the length and enclosed area of α , respectively. If S is a collection of simple closed curves, the *optimal isoperimetric ratio* of S is defined as

$$R(\mathcal{S}) = \inf_{\alpha \in \mathcal{S}} r(\alpha).$$

Thus, for example, if S consists of all simple closed curves in the plane, then $R(S) = 4\pi$ and $r(\alpha) = 4\pi$ if and only if α is a circle.

- (a) Let \mathcal{P}_n denote the set of all convex polygons in the plane with n sides. Determine $R(\mathcal{P}_n)$.
- (b) Find all $p \in \mathcal{P}_n$ such that $r(p) = R(\mathcal{P}_n)$.
- (C10) Consider the parabola $P = \{y = x^2\}$ in the plane. Let p(s) denote an arc length parameterization of P with p(0) = (0,0) and p'(0) = (1,0). Let T(s) be the tangent line to P at p(s). For any $s \in \mathbb{R}$, apply a rotation and translation so that p(s) is sent to (s,0) and T(s) becomes the x axis; call the resulting parabola P(s). We say P(s) is the result of rolling P along the x axis.

Given a point q in \mathbb{R}^2 , we can form a path q(s) by applying the same rotation and translation to q as is used to transform P into P(s). One can think of q as being "rigidly attached" to P, so it moves as P rolls. Show that if q = (0, 1/4), then q(s) is a catenary. (If you do not know what a catenary is, then consider the problem to be "Find a simple formula for the curve traced out by q(s).")

(C11) Let $\alpha(\theta)$ and $\beta(\theta)$ denote a pair of circles in \mathbb{R}^3 parameterized with constant speed by $\theta \in [0, 2\pi]$. Suppose that α and β lie in distinct parallel planes, and that the line joining their centers is perpendicular to these planes.

For each θ , let L_{θ} denote the line in \mathbb{R}^3 containing $\alpha(\theta)$ and $\beta(\theta)$. The union of these lines, $S = \bigcup_{\theta} L_{\theta}$ is the *scroll* generated by α and β .

Show that this scroll surface S can be defined by a simple equation F(x, y, z) = 0, and give a formula for F in terms of the relative position of α and β and their parameterizations.

- (C12) Let $U = \{(x, y) \mid x^2 + y^2 < 1\}$ denote the unit disk in \mathbb{R}^2 .
 - (a) Let $p, q \in U$. Show that there exists is a diffeomorphism $\phi : U \to U$ such that $\phi(p) = q$.
 - (b) Let $p, q \in U$ and suppose $\max(|p|, |q|) < R < 1$. Show that there exists a diffeomorphism $\phi: U \to U$ such that $\phi(p) = q$ and so that $\phi(x) = x$ for all $x \in U$ with |x| > R.
- (C13) Let S be a connected regular surface in \mathbb{R}^3 . Show that for any $p, q \in S$ there is a diffeomorphism $\phi: S \to S$ such that $\phi(p) = q$. Hints:
 - See the previous problem.
 - Given $p \in S$, what can you say about the set of $q \in S$ for which such a differomorphism exists?
- (C14) Characterize all ruled surfaces that are also surfaces of revolution.
- (C15) Find a parameterization of the path traced out by one focus of an elliptical object as it rolls along the x axis without slipping. Your parameterization may need to use functions defined in terms of integrals that cannot be evaluated explicitly.
- (C16) Show that the surface of rotation of the curve described in the previous problem has constant mean curvature.
- (C17) Determine the set of pairs of real numbers (α, β) such that

$$\begin{split} (x+y+z)^3 &= \alpha (x^3+y^3+z^3) + \beta (x^2y+y^2z+z^2x+x^2z+z^2y+y^2x) \\ \text{defines a regular surface in } \mathbb{R}^3 - \{(0,0,0)\}. \end{split}$$

- (C18) Find a regular surface in \mathbb{R}^3 that is not a sphere but which contains at least three circles through each point.
- (C19) Let $S \subset \mathbb{R}^3$ be a regular surface. Let α be a line of curvature of S. Find a formula for the curvature of α (considered as a space curve) in terms of the principal curvatures of S and their covariant derivatives.
- (C20) Is every space curve a line of curvature on some regular surface? (Either construct such a surface for any given curve, or give an example in which you prove that no such surface exists.)
- (C21) Is every space curve a geodesic on some regular surface? (Either construct such a surface for any given curve, or give an example in which you prove that no such surface exists.)