Math 442 - Differential Geometry of Curves and Surfaces Supplementary Homework Problems

Version 2024-06-12 **Emily Dumas**

(P1) In \mathbb{R}^3 , the vector product takes two vectors v_1, v_2 as input and produces a new vector $v_1 \wedge v_2$.

The right generalization of the vector product to \mathbb{R}^n is an operation that takes (n-1) vectors $v_1, v_2, \ldots, v_{n-1}$ and produces a vector $v_1 \wedge v_2 \wedge \cdots \wedge v_{n-1}$. As in the \mathbb{R}^3 case, the dot product of the result with another vector is expressed as a determinant.

- (a) Based on these hints, write a proper definition of the vector product in \mathbb{R}^n .
- (b) Write a formula for the components of the vector product in \mathbb{R}^4 . (That is, write each component of $u \wedge v \wedge w$ in terms of the components of u, v, and w.)
- (c) Write a similar formula for the vector product in \mathbb{R}^2 , and describe the resulting vector geometrically. Note that this vector product takes a single vector u and produces a new vector, which you might call \hat{u} .
- (P2) This problem continues the discussion of matrix-valued functions from the lecture on January 21.
 - (a) Give an example of a differentiable matrix-valued function M(s) satisfying both of these conditions:
 - (i) For all s, the matrix M(s) is orthogonal and det M(s) = 1. (That is, $M(s) \in SO(3)$.)
 - (ii) The three columns of M(s) do not form the Frenet frame of any differentiable space curve.
 - (b) Consider the determinant of an $n \times n$ matrix as a function of the n^2 entries of the matrix. Compute its gradient, and use this to compute

$$\left. \frac{d}{ds} \det A(s) \right|_{s=0}$$

where A(s) is a differentiable matrix-valued function, and A(0) = I.

(A formula was stated in class. Here you are asked to derive it yourself.)

- (P3) For each of the following subsets of \mathbb{R}^2 , draw a picture of the corresponding set of lines (in the (p, θ) plane) that intersect the set. For example, as we discussed in class, a point in \mathbb{R}^2 gives rise to a vertical sinusoidal curve in the space of lines. Shade your drawing according to the number of intersections.
 - (a) The unit circle.

 - (b) The L^1 unit circle, i.e. $\{(x, y) | |x| + |y| = 1\}$. (c) The elliptic curve $\{(x, y) | y^2 = x^3 + 3x^2\}$, which is pictured in Figure ??. In this case, also indicate the set of tangent lines in your drawing.
- (P4) Let Ω be a convex set in \mathbb{R}^2 . The average chord length of Ω is defined by

$$\bar{\ell}_{\Omega} = \frac{\int_{\mathscr{L}} \operatorname{Length}(\Omega \cap (p, \theta) \operatorname{-line}) \, dp d\theta}{\int_{\mathscr{L}} \, dp d\theta}.$$

Find a formula for $\bar{\ell}_{\Omega}$ in terms of the area and perimeter of Ω .

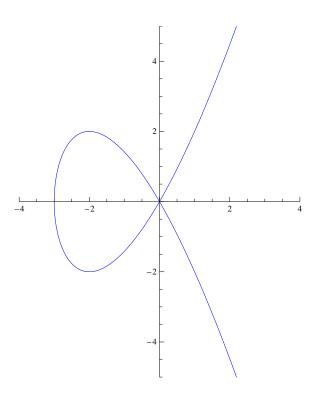


FIGURE 1. The elliptic curve $\{(x, y) | y^2 = x^3 + 3x^2\}$.

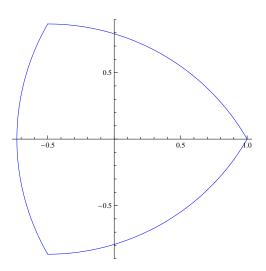


FIGURE 2. The Reuleaux triangle, which is not a triangle, consists of three circular arcs. Each arc is centered at one vertex of an equilateral triangle, and has two sides of the triangle as radii.

(P5) The *horizontal width* of a convex set $\Omega \subset \mathbb{R}^2$ is the difference between the largest and smallest x-coordinates of points in Ω . The θ -width of Ω is the horizontal width of the set obtained by rotating Ω clockwise by angle θ .

A region of constant width w is a convex set in \mathbb{R}^2 such that the θ -width is equal to w for all θ . A round disk is an example of such a region, as is the region bounded by the Reuleaux triangle (Figure ??).

Show that the length of the boundary curve of a region of constant width w is equal to πw .

- (P6) (a) Write the definition of a *regular curve in* \mathbb{R}^3 that would correspond to the definition of a regular surface on page 52 of the textbook. Your definition should begin: "A subset $C \subset \mathbb{R}^3$ is a regular curve if..."
 - (b) Is the following statement true or false? (Give a proof or counterexample.) If $I \subset \mathbb{R}$ is an open interval and $\alpha : I \to \mathbb{R}^3$ is a differentiable map such that $|\alpha'(t)| \neq 0$ for all $s \in I$, then the trace of α is a regular curve.
- (P7) Consider the equations

(
$$\diamondsuit$$
) $x^2 + y^2 + z^2 = a^2$
(\clubsuit) $y - 2by + z^2 = 0$

- (a) For what values of a does (\diamondsuit) determine a regular surface?
- (b) For what values of b does (\clubsuit) determine a regular surface?
- (c) For what values of (a, b) does the pair of equations define a regular curve? Draw an example when the intersection of the surfaces is not regular.
- (d)-(f) Answer the same questions for the following pair of equations:

$$(\heartsuit) \quad xyz = a^2$$
$$(\clubsuit) \quad x^2 + y^2 - z^2 = b^2$$

(P8) As discussed in lecture, if u, v are functions of t, and if L(u, v, u', v', t) is a differentiable function of 5 variables, then the functional

$$\mathscr{L}[u,v] = \int_a^b L(u(t),v(t),u'(t),v'(t),t)dt$$

has two associated Euler-Lagrange equations:

$$\frac{\partial L}{\partial u} = \frac{d}{dt} \left(\frac{\partial L}{\partial u'} \right)$$
$$\frac{\partial L}{\partial v} = \frac{d}{dt} \left(\frac{\partial L}{\partial v'} \right)$$

This is a system of second-order ODE in u, v.

(a) Given a first fundamental form $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$ on an open set U, consider the length functional

$$\text{Length}(u(t), v(t)) = \int_{a}^{b} \sqrt{E(u(t), v(t)) \ u'(t)^{2} + 2F(u(t), v(t)) \ u'(t)v'(t) + G(u(t), v(t)) \ v'(t)^{2}} dt$$

Write out the corresponding Euler-Lagrange equations, and simplify as much as possible.

- (b) Let $U = \{(x, y) | y > 0\}$ be the open upper half-plane, and let $E(x, y) = G(x, y) = 1/y^2$, F(x, y) = 0. Substitute this into the equations from (a) and simplify. (Your answer should be a system of equations for x(t) and y(t).)
- (c) Verify that x(t) = sinh(t)/cosh(t), y(t) = 1/cosh(t) is a solution to the equations from (b). What does this curve look like?
 Note: this part of the problem was corrected on March 2; the previous version had x and y switched, so the curve did not lie in the upper half-plane!
- (P9) Prove that locally, any curve in the plane is a flow line of *some* vector field. Here is a more precise version of what you should prove: Let $\alpha(t)$ be a regular parameterized curve in \mathbb{R}^2 , defined for $t \in (a, b)$. Show that for any $t_0 \in (a, b)$, there is an open interval I with $t_0 \in I \subset (a, b)$ and a vector field W defined on an open neighborhood of $\alpha(I)$ such that the restriction of α to I is a flow line of W.

- (P10) Let S be the surface in \mathbb{R}^3 defined by the equation $z^2 = x^2 + y^2 + 1$. Let C_h be the circle of intersection of S and the plane z = h, where h > 1, and let $\alpha(t)$ be a parameterization of C_h . Compute the angle between $\alpha'(0)$ and its parallel transport around C_h . Is there any h for which C_h a geodesic? *Hint: Use the same method that the book describes for the unit sphere in* \mathbb{R}^3 .
- (P11) Let S be a circular torus of revolution in \mathbb{R}^3 , parameterized by $(u, v) \in [0, 2\pi] \times [0, 2\pi]$ so that u = 0 is the circle of points farthest from the axis of revolution. Let θ denote the angle between a tangent vector in $T_{(0,0)}S$ and the curve $\{u = 0\}$. For each value of θ , draw a picture of what you think the geodesic ray starting at (0,0) in the direction θ might look like. Also draw a picture of what this ray looks like in the square $[0, 2\pi] \times [0, 2\pi]$ in the uv plane.
 - (a) $\theta = 0$ (easy!)
 - (b) $\theta = 0.1$
 - (c) $\theta = \pi/4$
 - (d) $\theta=\pi/2-0.1$
 - (e) $\theta = \pi/2$ (easy!)

Note: Your answer will be considered "correct" if it appears to be consistent with Clairaut's theorem and your previous homework problems about geodesics on circular tori.