
Math 442 - Differential Geometry of Curves and Surfaces

Midterm Topic Outline

Emily Dumas

This draft of the outline only describes topics that we did not cover in class on March 2. Even
for this material, the outline is not guaranteed to be exhaustive. Anything we covered in class
or that was in the assigned reading may be on the exam.

(3) Surfaces

...

(h) The inverse function theorem: If ϕ : U → V is a differentiable map and if dϕp
is an isomorphism (⇔ the matrix of partial derivatives at p is invertible), then
ϕ is a diffeomorphism near p, i.e. there exists a neighborhood U ′ of p such that
ϕ : U ′ → V ′ = ϕ(U ′) is a diffeomorphism.

(i) General philosophy: Many ideas from multivariable calculus can be generalized
to regular surfaces. Often the generalization is defined like this: Use local coor-
dinates to move everything into R2, then apply the usual definition for functions
of two variables.

(j) Differentiable functions on surfaces. A function f : S → R on a regular surface
can be locally expressed as f(u, v), where (u, v) are local coordinates on S near a
point p = (u0, v0). If f(u, v) is differentiable (in the multivariable calculus sense)
at (u0, v0), then we say f is differentiable at p.
This does not depend on the coordinate system, since a change of coordinates is
differentiable.
If f is differentiable at every point of S, then it is differentiable.

(k) Differentiable maps between surfaces. A continuous map ϕ : S1 → S2 between
two regular surfaces can be locally expressed as f(u, v) = (s(u, v), t(u, v)), where
(u, v) are local coordinates on S1 near p = (u0, v0) and (s, t) are local coordinates
on S2 near ϕ(p). If s(u, v) and t(u, v) are differentiable at p, then we say ϕ is
differentiable at p.
If ϕ is differentiable at every point of S1, then ϕ is differentiable.

(l) Tangent plane. If X(u, v) is a local parameterization of S, then the span of Xu

and Xv at a point p is the tangent plane of S at p, denoted TpS.
An alternate definition: Consider the set of all curves in S that pass through p.
The set consisting of their tangent vectors at p is TpS.

(m) Differential. A differentiable map ϕ : S1 → S2 induces a linear map dϕp : TpS1 →
Tϕ(p)S2, the differential of ϕ at p. In local coordinates (u, v) near p and (s, t) near
ϕ(p), we can write ϕ(u, v) = (s(u, v), t(u, v)). Then the differential has matrix

dϕp =

(
∂s
∂u(p)

∂s
∂v (p)

∂t
∂u(p)

∂t
∂v (p)

)
.

(n) The inverse function theorem for surfaces. If ϕ : S1 → S2 is a differentiable map
and dϕp is an isomorphism, then ϕ is a diffeomorphism near p, i.e. there exists a
neighborhood U ′ of p such that ϕ : U ′ → V ′ = ϕ(U ′) is a diffeomorphism.

(o) A map ϕ : S1 → S2 whose differential is an isomorphism at every point need not
be injective or surjective.
Examples:

(i) The inclusion of a small disk by a coordinate chart (not surjective).



(ii) The plane mapping to the torus by a doubly-periodic parameterization
function (not injective).

(p) Some ways to construct surfaces:
(i) The cone on the space curve α(t) is parameterized by X(s, t) = tα(s).
(ii) The surface of rotation of a plane curve (φ(t), ψ(t)) is parameterized by

X(t, θ) = (φ(s) cos(θ), φ(s) sin(θ), ψ(s)).
(iii) The surface of rotation of a circle that does not intersect the y axis is a

circular torus.
(iv) A surface that contains a line segment through each of its point is ruled.

Such a surface can be parameterized by X(s, t) = α(s) + tβ(s).
(4) First and second fundamental forms

(a) Restricting the inner product of R3 makes TpS into an inner product space. The
associated quadratic form is the first fundamental form, denoted Ip. Thus Ip(w)
is the squared length of w (as a vector in R3).

(b) In the basis Xu, Xv for TpS given by a local parameterization, the matrix of Ip

is

(
E F
F G

)
where E = ⟨Xu, Xu⟩ F = ⟨Xu, Xv⟩ G = ⟨Xv, Xv⟩.

In other words, we have “I = ⟨dX, dX⟩”.
(c) The length of a curve α(t) = (u(t), v(t)) on S is given by∫ b

a

√
Eu′2 + 2Fu′v′ +Gv′2dt.

Note that Eu′2 means E(u(t), v(t)) (u′(t))2, and similarly for the other terms.
(d) The area of a region Ω contained in a local coordinate chart (u, v) is given by∫∫

Ω

√
EG− F 2dudv.

Note that when S is contained in R2, this is the usual formula for change of
variables, and

√
EG− F 2 is the Jacobian of the transformation.

(e) The angle θ between vectors w1 = aXu + bXv and w2 = cXu + dXv satisfies

cos(θ) =
⟨w1, w2⟩
|w1| |w2|

=
Eac+ F (ad+ bc) +Gbd√

(Ea2 + 2Fab+Gb2)(Ec2 + 2Fcd+Gd2)

(f) A map between surfaces whose differential preserves length of vectors is a (local)
isometry. If the differential preserves angles, then the map is conformal. Note
than an isometry is conformal.

(g) An orientation of a surface is a choice of a unit normal vector at each point
in such a way that the resulting map N : S → S2 is continuous. Here S2 =
{(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. If a surface S has an orientation, then it has
exactly two, and we say S is orientable.

(h) When parameterizing an oriented surface, we always choose X(u, v) so that Xu∧
Xv is a positive multiple of the unit normal, i.e.

N(u, v) =
Xu ∧Xv

|Xu ∧Xv|
(i) The map N is called the Gauss map of the surface. The differential of the Gauss

map is self-adjoint with respect to Ip.
(j) The second fundamental form is the quadratic form IIp on TpS defined by IIp(w) =

−⟨dNp(w), w⟩ = ⟨∂2X
∂w2 , N(p)⟩. So IIp is the normal component of the acceleration

of a path in S with tangent vector w. One could summarize this definition as
“II = −⟨dX, dN⟩ = ⟨d2X,N⟩”.

(k) The eigenvalues of −dNp are the principal curvatures of S at p, denoted k1, k2.
The associated eigenspaces are the principal directions.



(l) The product of the principal curvatures is theGaussian curvature K(p) = k1(p)k2(p) =
det(dNp).

(m) The average of the principal curvatures is the mean curvature H(p) = 1
2(k1(p) +

k2(p)) = tr(dNp).

(n) In local coordinates, the matrix of IIp is given by

(
e f
f g

)
where:

e = ⟨Xuu, N⟩ = −⟨Xu, Nu⟩
f = ⟨Xuv, N⟩ = −⟨Xu, Nv⟩ = −⟨Xv, Nu⟩
g = ⟨Xvv, N⟩ = −⟨Xv, Nv⟩

(o) This is different from the matrix of dNp, unless Xu and Xv are orthonormal. In

general, we have dNp = −
(
E F
F G

)−1(
e f
f g

)
.

(p) Using the formula for N in terms of Xu and Xv gives the convenient formula

e =
1√

EG− F 2
det(Xu Xv Xuu)

and similarly for f and g, replacing only the second derivative term with Xuv or
Xvv, respectively.

(q) Using the formula for dNp, we have

K =
eg − f2

EG− F 2
and H =

Eg − 2Ff +Gg

2(EG− F 2)

and the principal curvatures are the roots of the polynomial λ2 − 2Hλ+K.
(r) If α(s) is a curve contained in S, then the length of the projection of α′′(s) onto

N(α(s)) is the normal curvature of α, denoted kN . The normal curvature at
α(s) only depends on α′(s), and is given by IIα(s)(α

′(s)). Here we assume α(s)
is parameterized by arc length.

(s) The principal curvatures at p are the extreme values of the normal curvature as
α′ varies over all unit tangent vectors at p.

(t) Classification of points on a surface:
• If K(p) > 0, then p is an elliptic point.
• If K(p) = 0 but dNp is nonzero, then p is a parabolic point.
• If K(p) = 0 and dNp is zero, then p is a planar point.
• If K(p) < 0, then p is a hyperbolic point.
• If k1(p) = k2(p) (or equivalently, H(p)2 = K(p)), then p is an umbilic point.

(u) Typical examples:
• Every point on the unit sphere is elliptic and umbilic.
• Every point on a cylinder is parabolic.
• Every point on a plane is planar
• The point (0, 0, 0) on {z = (x2 + y2)2} is planar.
• The point (0, 0, 0) on the “saddle” {z2 = x2 − y2} is hyperbolic.
• If f ′′(x) > 0, then every point on the surface of rotation of f is hyperbolic.
• The point (0, 0, 0) on the circular paraboloid {z = x2 + y2} is umbilic.

(v) A curve in S whose tangent vector at each point is a principal direction is a line
of curvature.

(w) Special cases:
• If F = 0, then the horizontal and vertical lines in the uv plane correspond
to orthogonal curves in S.

• If F = f = 0, then the principal curvatures are e/E and g/G, the principal
directions are Xu and Xv, and the horizontal and vertical lines in the uv
plane correspond to lines of curvature in S.


