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(C1) Describe all curves on the unit sphere with constant torsion. Are any of them
closed? (Hint: Begin with the case τ = 0.)

(C2) Generalize the Frenet frame and the Frenet equations to R4 as follows.

Let α : I → R3 be a differentiable curve (not necessarily parameterized by arc
length) such that for all t ∈ I, the vectors (α′(t), α′′(t), α′′′(t)) form a basis of
R3.
(a) Apply the Gram-Schmidt algorithm to this basis to obtain an orthonormal

basis; show that the Frenet vectors, curvature, and torsion all appear as
part of this calculation.

(b) Now suppose α : I → R4 is a differentiable curve. Use the results of (a)
to generalize the Frenet frame to this case, obtaining an orthonormal basis
of R4 adapted to the curve. Find three curvature-like functions that play
the same role as κ, τ in the 3-dimensional case, and write the four Frenet
differential equations that the frame vectors obey.

(C3) Let α : I → R3 be a differentiable curve parameterized by arc length, with
curvature κα(s) ̸= 0 and torsion τα(s). For each s ∈ I, let β(s) denote the center
of the osculating circle of α at α(s).
(a) Compute the speed |β′(s)|, curvature κβ(s), and torsion τβ(s) of the curve

β. (Warning: s is not necessarily the arc length parameter for β! )
(b) Find a particular curve α so that the new curve β is “the same”, i.e. related

to α by a rotation and/or translation.

(C4) (a) Let α : I → R3 be a differentiable curve that lies on the unit sphere
(i.e. |α(s)| = 1 for all s ∈ I). Show that κ(s) ≥ 1 for all s ∈ I.

(b) Suppose instead that α lies on the ellipsoid ax2 + by2 + cz2 = 1, where
a, b, c > 0. What is the minimum possible value for the curvature?

(C5) Let α : I → R2 be a differentiable plane curve with positive, increasing curvature
(i.e. κ(s), κ′(s) > 0).
(a) Show that the osculating circles of α are nested, meaning that if s′ > s, then

the osculating circle at α(s′) is contained in the osculating cicle at α(s).
(b) From (a) it follows that the osculating circles fill an open set U ⊂ R2 that

contains the trace of α. Let V be the unit vector field in U that is tangent
to these circles, and which always points counter-clockwise. Then each of
the osculating circles is tangent to this V , as is the curve α itself. Why is
this surprising? What is going on?

Hint: A curve whose tangent vector is always horizontal is a horizontal line.
There is only one horizontal line through any given point.

(C6) For every natural number g, find a polynomial Pg(x, y, z) with the property that
P−1
g (1) is a regular surface in R3 of genus g. (In particular, you should come up

with some way to recognize the genus of a closed surface in R3.)



(C7) What is the minimum degree of a polynomial P (x, y, z) such that P−1(1) is a
regular surface of positive genus?

(C8) Let f(x, y) be a smooth function of two variables. How can you use f and its
derivatives to determine whether or not z = f(x, y) is (locally) a ruled surface?
(Your condition should be pointwise, meaning that you are not allowed to com-
pare values or derivatives at different points. Hint: If (x0, y0) is a local maximum
or local minimum, then the graph cannot be ruled.)

(C9) Let α(θ) and β(θ) denote a pair of circles in R3 parameterized with constant
speed by θ ∈ [0, 2π]. (Note that a circle in R3 is defined as the set of all points
in a plane that lie a fixed distance from some point in that plane.) Describe the
scroll generated by α and β in a way that does not depend on a parameteriza-
tion, e.g. find a function F (x, y, z) so that the scroll consists of points satsifying
F (x, y, z) = 0.

(C10) Consider the parabola P = {y = x2} in the plane. Let p(s) denote an arc length
parameterization of P with p(0) = (0, 0) and p′(0) = (1, 0). Let T (s) be the
tangent line to P at p(s). For any s ∈ R, apply a rotation and translation so
that p(s) is sent to (s, 0) and T (s) becomes the x axis; call the resulting parabola
P (s). We say P (s) is the result of rolling P along the x axis.

Given a point q in R2, we can form a path q(s) by applying the same rotation
and translation to q as is used to transform P into P (s). (Think of q as being
“rigidly attached” to P , so it moves as P rolls.) Show that if q = (0, 1/4), then
q(s) is a catenary.

(C11) Find a parameterization of the path traced out by one focus of an elliptical object
as it rolls along the x axis without slipping. Your parameterization may need to
use functions defined in terms of integrals that cannot be evaluated explicitly.

(C12) Show that the surface of rotation of the curve described in the previous problem
has constant mean curvature.

(C13) Show that any embedded curve in R2 with closed image is a flow line of a vector
field. That is, let α : [0, 1] → R2 be an injective differentiable map with α′(t) ̸= 0
for t ∈ [0, 1]. Show that there is a vector field W defined on a neighborhood
of α([0, 1]) such that α((0, 1)) is a flow line of W . (The local version of this
problem is P9 on the weekly problem list.)

(C14) Let S ⊂ R3 be a regular surface with no umbilic points, and let α : I → S be
a line of curvature of S corresponding to the principal curvature function k1.
Consider α as a space curve and calculate its curvature in terms of k1, k2, and
their covariant derivatives.


