Math 520 Final Exam Spring 2008 Sections 1–3 (Xiao/Dumas/Liaw)

Read these instructions carefully.

• Write your name, section, and "Math 520 Final Exam" on the front of an exam book.

 $\begin{array}{rcl} 10 \mathrm{am} \ / \ \mathrm{Xiao} &=& \mathrm{Section} \ 1 \\ \mathrm{Noon} \ / \ \mathrm{Dumas} &=& \mathrm{Section} \ 2 \\ 1 \mathrm{pm} \ / \ \mathrm{Liaw} &=& \mathrm{Section} \ 3 \end{array}$

- Read each problem carefully before you attempt to solve it.
- Write your solutions to the problems in the examination book.
- Clearly indicate where your solution to each problem begins and ends.
- Make sure your solutions are clear, concise, and legible.
- There are **9** problems on the exam, worth a total of 50 points. the number of points assigned to each problem or part thereof is listed in the right margin.
- Manage your time carefully. If you get stuck on one problem, move on to another.

Do not turn the page until you are told to do so!

1. Let P denote the projection onto the column space C(H), where

	/ 200820082008	520520520520	888923164781
	789847589127441	$\sqrt{941}$	389734581
и _	31897581128	17895789243	524089484923
$\Pi =$	0	0	555
	222	0	0
	0	111	0 /

Compute tr(P) and det(P), and explain your reasoning.

- 2. Let F denote the projection from \mathbb{R}^4 onto the subspace of vectors satisfying $x_1 + x_2 + x_3 + x_4 = 0$.
 - (a) Compute the matrix F explicitly. (That is, write the 4×4 matrix F as your answer, and [2 pts] justify your computation.)
 - (b) Compute reduced row echelon form of F.
 - (c) What is the rank of F?

(d) What vector in
$$C(F)$$
 is closest to $\boldsymbol{b} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$? [2 pts]

In other words, find $\boldsymbol{p} \in C(F)$ for which $\|\boldsymbol{b} - \boldsymbol{p}\|$ is as small as possible.

- 3. Let P_4 denote the vector space of polynomials in one variable of degree less than or equal to 4.
 - (a) Let S be the subset of P_4 consisting of all polynomials p(x) that take on the same values [2 pts] at x = 0 and x = 1, i.e.

$$S = \{ p(x) \in P_4 \mid p(0) = p(1) \}.$$

Is S a subspace of P_4 ? Either show that it is, or explain why it is not.

(b) Do these four vectors (below) span the space P_4 ? Justify your answer. [2 pts]

 $p_1(x) = x^4 + x^3 + 2x^2 + 3x + 1$ $p_2(x) = x^4 + 2x^3 + 3x^2 + x + 1$ $p_3(x) = 2x^4 + 3x^3 + x^2 + x + 1$ $p_4(x) = 4x^4 + 6x^3 + 6x^2 + 5x + 3$

(c) Are the vectors p_1, p_2, p_3, p_4 from part (b) linearly independent? Justify your answer. [2 pts]

*** The exam continues on the next page. ***

[3 pts]

[2 pts]

[1 pt]

4. Let
$$A = \begin{pmatrix} -2 & -2 & 8 \\ -2 & 7 & -10 \\ 8 & -10 & 4 \end{pmatrix}$$
.

(a) Show that the determinant of A is equal to zero. [2 pts]

(b) Show that vector
$$\begin{pmatrix} 1\\ -2\\ 2 \end{pmatrix}$$
 is an eigenvector of A . [2 pts]

- (c) Use the trace formula to find the third eigenvalue of A. [1 pt]
- (d) Find an orthogonal matrix Q that diagonalizes A. (Write $A = Q\Lambda Q^T$.) [2 pts]

5. Let
$$K = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -1 & -1 \\ t & -2 & 0 \end{pmatrix}$$
 depend on the real parameter t .
(a) For which values of t is K invertible? [2 pts]
(b) Show that 1 is an eigenvalue of K for all real t . [2 pts]
(c) Show that K is not diagonalizable for $t = 2$. [2 pts]

6. Determine whether or not each of these matrices is positive definite. Justify your answer in each case.

/1	. 2	3)	3/
(a) 2	2 1	2	2
$\left(3\right)$	3 2	1,)
/3	2	1	$\mathbf{\lambda}$

(b)
$$\begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
 [2 pts]

(c)
$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 10 & 1 & 0 \\ 0 & 1 & 100 & 1 \\ 0 & 0 & 1 & 1000 \end{pmatrix}$$
 [2 pts]

*** The exam continues on the next page. ***

7. This question concerns the matrix

$$B = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{pmatrix}.$$

(a) Find all of the eigenvalues of B.

[2 pts]

[1 pt]

- (b) For each eigenvalue, find a maximal set of linearly independent eigenvectors. (Clearly [2 pts] indicate which eigenvectors are associated with each eigenvalue.)
- (c) Is *B* diagonalizable? Why or why not?
- (d) Find the solution $\boldsymbol{u}(t)$ to the following differential equation and initial condition: [2 pts]

$$\frac{d\boldsymbol{u}}{dt} = B\boldsymbol{u} \text{ and } \boldsymbol{u}(0) = \begin{pmatrix} 1\\ 1\\ 0\\ -1 \end{pmatrix}$$

8. Suppose T is a linear transformation from V to W, and that its matrix with respect to the input basis v_1, v_2, v_3 of V and output basis w_1, w_2 of W is

$$J = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}.$$

- (a) Is the vector $\boldsymbol{v}_1 + \boldsymbol{v}_2 \boldsymbol{v}_3$ in the kernel of T?
- (b) What is the range of T?
- (c) Find the matrix J' which represents T with respect to the input basis
 - $egin{aligned} m{v}_1' &= m{v}_1 + m{v}_2 \ m{v}_2' &= m{v}_2 + m{v}_3 \ m{v}_3' &= m{v}_1 + m{v}_3 \end{aligned}$

and output basis

$$oldsymbol{w}_1'=oldsymbol{w}_2\ oldsymbol{w}_2'=oldsymbol{w}_1+oldsymbol{w}_2$$

9. Give an example of a 5×5 matrix that is orthogonal, symmetric, positive definite, invertible, [2 pts] and diagonalizable. (Write *one* matrix that has all of these properties.)

Hint: Look for an easy example; do not spend a lot of time or effort trying to construct the matrix!

*** This is the end of the exam. ***

[2 pts]

- [2 pts]
- [2 pts][2 pts]