Note: Some of these solutions include more explanation than was necessary for full credit.

1. (5 points) This question concerns the matrix

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}.$$

Solution: For use in solving (a)-(c) below, put B^T into row reduced echelon form:

$$R' = \operatorname{RREF}(B^T) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Note: An alternate solution to this problem might use the RREF of B and the elimination matrix E.

(a) (2 points) Find a basis for $C(B^T)$, the row space of B.

Solution: The pivot columns of
$$B^T$$
 form a basis of $C(B^T)$:

$$\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 2\\3\\4\\5 \end{pmatrix}$$

In fact, any two columns of B^T (i.e. rows of B) form a basis of $C(B^T)$. (For some other rank 2 matrices, one would need to choose the pair more carefully.)

(b) (2 points) Find a basis for $N(B^T)$, the left null space of B.

Solution: The null space of B^T is one-dimensional, and a basis is computed from the free column of R':

$$\begin{pmatrix} -F\\I \end{pmatrix} = \begin{pmatrix} 1\\-2\\1 \end{pmatrix}$$

To check this, notice that the sum of the first and last rows of B is equal to twice the middle row.

(c) (1 point) Of the four fundamental subspaces associated to B, which one can also be described as $C(B^T)^{\perp}$, the orthogonal complement of the row space?

Solution: The **null space**, N(B), is the orthogonal complement of $C(B^T)$. The orthogonality of rows of B and vectors $\boldsymbol{x} \in N(B)$ is expressed in the definition of the null space, $B\boldsymbol{x} = \boldsymbol{0}$.

- 2. (6 points) Evaluate each determinant, or explain why it is not defined.
 - (a) (1 point) det(-3)

Solution: -3 $\begin{pmatrix} 0 \\ 5 \end{pmatrix}$ 5(b) (1 point) det 27Solution: -252 $2 \ 0$ (c) (1 point)1 $2 \ 0$ Solution: Not defined, because the matrix is rectangular. 1 0 7|0|0 1 0 0 70 7(d) (1 point) 0 $0 \ 1$ 0 0 0 0 1 1 $0 \ 0 \ 0 \ 1$ $\mathbf{2}$ **Solution:** -1 (One possible shortcut: swap rows 1,2 and subtract row 4 from row 5 to obtain upper triangular with all 1s on the diagonal. Hence $-\det = 1$.) (e) (1 point) det $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ Solution: 1 (f) (1 point) det A, where A is the 4 × 4 matrix with entries $a_{ij} = \begin{cases} 1, & \text{if } i+j=5, \\ 0, & \text{otherwise.} \end{cases}$ Solution: $\begin{vmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = 1$ (Two row exchanges to obtain the identity.) 3. (5 points) The matrix $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 2 \\ 4 & 2 & 1 & 1 \end{pmatrix}$ has determinant |A| = -2. (a) (1 point) Is A invertible? Explain your answer.

Solution: Yes, because the determinant is nonzero. A matrix is singular if and only if its determinant is zero.

(b) (1 point) Is there any $b \in \mathbb{R}^4$ such that Ax = b does not have a solution? If so, give an example. If not, explain why.

Solution: No, there is always a solution, because A is invertible. In fact, $\boldsymbol{x} = A^{-1}\boldsymbol{b}$ is the unique solution.

(c) (3 points) Use Cramer's rule to compute x_4 such that $A\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix}$

Solution: Using a column operation and two cofactor expansions:

$$|B_4| = \begin{vmatrix} 1 & 0 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 4 & 2 & 1 & 0 \\ 6 & 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -3.$$

Therefore,

$$x_4 = \frac{|B_4|}{|A|} = \frac{-3}{-2} = \frac{3}{2}$$

4. (7 points) This question concerns the matrix $D = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$ and the vector $\boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

(a) (3 points) Find **three** orthonormal vectors $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ in \mathbb{R}^3 such that $C(D) = \text{Span}(\boldsymbol{q}_1, \boldsymbol{q}_2)$.

Solution: Apply Gram-Schmidt to the columns of the invertible matrix

$$D' = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

and thus obtain orthonormal vectors $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ with the first two spanning C(D).

$$A_{1} = a_{1} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

$$A_{2} = a_{2} - \frac{A_{1}^{T}a_{2}}{A_{1}^{T}A_{1}}A_{1} = \begin{pmatrix} 1\\0\\1 \end{pmatrix} - \frac{2}{3}\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \frac{1}{3}\begin{pmatrix} 1\\-2\\1 \end{pmatrix}$$

$$A_{3} = a_{3} - \frac{A_{1}^{T}a_{3}}{A_{1}^{T}A_{1}}A_{1} - \frac{A_{2}^{T}a_{3}}{A_{2}^{T}A_{2}}A_{2} = \begin{pmatrix} 0\\0\\1 \end{pmatrix} - \frac{1}{3}\begin{pmatrix} 1\\1\\1 \end{pmatrix} - \frac{1}{6}\begin{pmatrix} 1\\-2\\1 \end{pmatrix} = \frac{1}{2}\begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

$$\boldsymbol{q}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \quad \boldsymbol{q}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix} \quad \boldsymbol{q}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

(b) (2 points) There is no solution to $D\boldsymbol{x} = \boldsymbol{b}$. Find the least squares approximate solution $\hat{\boldsymbol{x}}$.

$$\hat{\boldsymbol{x}} = (D^T D)^{-1} D^T \boldsymbol{b} = \left[\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix} \right]^{-1} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \\ = \frac{1}{2} \begin{pmatrix} 2 & -2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

As a check, notice that the error vector $\begin{pmatrix} 2\\3 \end{pmatrix} - \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$ is orthogonal to both columns of D, as it should be.

(c) (1 point) What is the projection of \boldsymbol{b} onto C(D)?

Solution:

Solution:

$$\boldsymbol{p} = D\hat{\boldsymbol{x}} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

(d) (1 point) What is the projection of **b** onto $C(D)^{\perp}$?

Solution:

$$oldsymbol{e} = oldsymbol{b} - oldsymbol{p} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

5. (6 points)

(a) (1 point) Suppose Q is an orthogonal $n \times n$ matrix. Is $\lambda = 0$ an eigenvalue of Q? Explain your answer.

Solution: A matrix with zero as an eigenvalue is singular (since the eigenvector is in the null space), but an orthogonal matrix is invertible (in fact, $Q^{-1} = Q^T$). Therefore, zero is not an eigenvalue of Q.

2008

(b) (3 points) Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 0 & 5 & 0 \\ 1 & 0 & 5 \end{pmatrix}$.

Solution: This matrix is 5I + A, where $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. Clearly $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ is in the null space of A, so it is an eigenvector of A with $\lambda = 0$.

Since the matrix A switches the first and last components of a vector (while setting the middle equal to zero), it also has eigenvalues $\lambda = 1$ and $\lambda = -1$ with eigenvectors). These are similar to the case of the 2 \times 2 permutation matrix $P_{12}.$ 0 and

Adding 5I to a matrix keeps the eigenvectors the same but adds 5 to each eigenvalue.

Thus for the matrix in question:

λ	4	5	6
x	$ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} $	$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$

As a check, notice that the sum of the eigenvalues is 15, and the product is 120, which agree with the trace and determinant of the given matrix (respectively).

Note: One could also find these eigenvalues and eigenvectors by the usual algorithm computing the characteristic polynomial, finding its roots, then finding bases for the eigenspaces. The solution given here is a possible shortcut, based on knowledge of the 2×2 permutation matrix.

(c) (2 points) Let V be the subspace of \mathbb{R}^4 consisting of all vectors orthogonal to

Let P be the 4×4 projection matrix onto V. Compute tr(P) and det(P), and explain your reasoning.

Solution: Note that $\dim(V) = 3$. Since P is a projection onto a 3-dimensional subspace of \mathbb{R}^4 , its eigenvalues are 0, 1, 1, 1 (listed with multiplicity). Therefore

$$tr(P) = 0 + 1 + 1 + 1 = 3$$
$$det(P) = 0 \cdot 1 \cdot 1 \cdot 1 = 0.$$

Of course it would be impractical to calculate these (by hand) from the actual matrix

$$P = \frac{1}{4302931} \begin{pmatrix} 4302481 & 7800\sqrt{2} & -30120\sqrt{2} & -15\sqrt{34} \\ 7800\sqrt{2} & 4032531 & 1044160 & 520\sqrt{17} \\ -30120\sqrt{2} & 1044160 & 270867 & -2008\sqrt{17} \\ -15\sqrt{34} & 520\sqrt{17} & -2008\sqrt{17} & 4302914 \end{pmatrix}.$$