
Math 520 Exam 1 Topic Outline
Sections 1–3 (Xiao/Dumas/Liaw) · Spring 2008

Exam 1 will be held on Tuesday, Feb 26, 7-8pm in 117 MacMillan

What will be covered

The exam will cover material from the lectures up to and including Friday, February 22. This
corresponds approximately to chapters 1 and 2, sections 3.1-3.4, and part of section 3.5 in
Strang’s book. There will be an emphasis on material after section 2.2.

Outline of topics

This outline is designed to help you plan your review for the first exam. It is not intended to
cover every detail.

(1) Foundation in vector arithmetic (§§1.1 - 1.2)
(a) Addition, scalar multiplication, the dot product, linear combinations

(2) Representing linear equations using matrices and vectors (§2.1)
(a) A system of linear equations becomes Ax = b in matrix/vector notation.
(b) Row Picture - each equation determines a subset (e.g. a plane in R3, a line in

R2) of the space of potential solutions. Taking the intersection gives the actual
solution set.

(c) Column Picture - finding a solution x amounts to expressing the right hand side
b as a linear combination of the columns of A.

(d) Possible solution sets: none at all, exactly one, or infinitely many. If x and y are
solutions, so is 1

2(x + y).

(3) Solving Linear Systems Ax = b (§2.2 - §2.3)
(a) Gaussian Elimination - row operations put an invertible square matrix A in upper

triangular form U , possibly after exchanging some rows.
(b) The right hand side b is transformed into a vector c by applying the same row

operations.
(c) The augmented matrix [A b] is a convenient way to keep track of both the matrix

and the right-hand side during elimination.
(d) The pivots appear on the diagonal of U .
(e) Back-substitution solves the triangular system Ux = c (and this is quite easy).
(f) Each row operation in the elimination process can be represented by an elimination

matrix Eij(`). Its looks like the n × n identity matrix except for the (i, j) entry,
which is −`.

(g) To determine the matrix representing a row operation (subtraction or row ex-
change), apply the same operation to the identity matrix.

(4) Matrix Algebra (§§2.4-2.5)
(a) If A is m× n and B is n× p then the product AB exists and is an m× p matrix.
(b) Each entry of AB is the dot product of a row from A and a column from B.
(c) The summation formula

(AB)ij =
n∑

k=1

AikBkj
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(d) Matrix multiplication is associative ((AB)C = A(BC)) but it is not commutative
(usually AB 6= BA).

(e) The square identity matrix I has 1 on the diagonal and 0 elsewhere.
(f) The inverse of a square matrix A is another matrix A−1 such that

AA−1 = A−1A = I

(g) The inverse of a product: (AB)−1 = B−1A−1

(h) The transpose operation: if A is m× n, then AT is n×m.

(AT )ij = Aji

(i) The transpose of a product: (AB)T = BT AT

(j) The inverse and transpose can be interchanged: (AT )−1 = (A−1)T

(k) A permutation matrix P has a exactly one 1 in each row and each column; all
other entries are zero.

(l) Permutation matrices satisfy P T = P−1.

(5) Finding the Inverse (§2.5)
(a) A square matrix may or may not have an inverse.
(b) The following are equivalent for a n× n (square) matrix:

(i) A has an inverse
(ii) A has n pivots (which are nonzero)
(iii) Ax = b has a solution for every b
(iv) Ax = 0 only when x = 0

(c) The definition of the inverse AA−1 = I is a system of linear equations for the
entries of A−1.

(d) Gauss-Jordan elimination solves these equations simultaneously; it transforms the
augmented matrix [A I] into [I A−1] using elimination (downward and upward)
and dividing rows by pivots.

(6) Elimination as Factorization (§§2.6-2.7)
(a) Gaussian elimination without row exchanges allows one to express an invertible

matrix A as a product of a lower triangular matrix L and an upper triangular
matrix U :

A = LU

(b) The matrix U is the final result of Gaussian elimination, while L is a table of the
multipliers used during elimination.

(c) In the LU decomposition, L has 1 on the diagonal, while U has pivots on the
diagonal.

(d) The closely related LDU decomposition separates the pivots from the upper tri-
angular matrix U . The diagonal matrix D contains the pivots, while the new
upper triangular matrix U ′ is obtained from U by dividing each row by its pivot.

A = LDU ′

(e) In the LDU decomposition, both L and U have 1s on the diagonal.
(f) The LU decomposition gives a new way to solve Ax = b: first solve Lc = b, then

solve Ux = c. Both are triangular systems so this is easy, using substitution.
(g) If row exchanges are necessary, the corresponding statement is that PA has an

LU decomposition for some permutation matrix P :

PA = LU
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(7) Vector Spaces and Subspaces (§3.1)
(a) A vector space is a set V together with two operations, vector addition and scalar

multiplication, satisfying the rules on page 118 of Strang.
(b) Examples of vector spaces: Rn, M2×2, F, Z
(c) A subspace is a subset of a vector space that is closed under vector addition and

scalar multiplication.
(d) A subset W ⊂ V is a subspace if and only if both of these conditions hold:

(i) For all x,y ∈ W , the sum (x + y) is also in W
(ii) For all x ∈ W and c ∈ R, the product cx is in W

(e) All subspaces contain the zero vector 0.
(f) If a subspace contains x, then it contains the entire line of multiples of x, i.e.

{cx | c ∈ R}.
(g) If a subspace contains a certain set of vectors, then it also contains any linear

combination of those vectors.
(h) The zero vector by itself is a subspace of any vector space.
(i) Subspaces of R2:

(i) The zero vector 0
(ii) A line containing 0
(iii) The entire plane R2

(j) Subspaces of R3:
(i) The zero vector 0
(ii) A line containing 0
(iii) A plane containing 0
(iv) The entire space R3

(8) Column Space and Null Space (§§3.1-3.2)
(a) The column space C(A) of an m × n matrix A is the subspace of Rm consisting

of all linear combinations of the columns of A. (There are n columns, each has m
entries.)

(b) A system of linear equations Ax = b has a solution if and only if b ∈ C(A).
(c) The null space N(A) of an m × n matrix A is the set of all vectors x such that

Ax = 0. It is a subspace of Rn.
(d) N(A) is a subspace because A is linear, i.e.

(i) A(x + y) = Ax + Ay
(ii) A(cx) = c(Ax)

(e) For a square invertible matrix, N(A) = 0, i.e. the only solution to Ax = 0 is
x = 0.

(f) If xparticular is a solution to Ax = b, and xnull ∈ N(A), then (xparticular + xnull)
is another solution of Ax = b.

(g) Finding the null space means solving Ax = 0; to do this, put A in echelon form,
obtaining a matrix U .

(h) The number of pivots obtained by putting A in echelon form is the rank of A
(which we call r).

(i) Solving Ux = 0 is equivalent to solving Ax = 0.
(j) The echelon matrix U has r pivot columns and (n − r) free columns. There are

corresponding pivot variables and free variables.
(k) The free columns of U are linear combinations of the previous columns. The pivot

columns are not linear combinations of previous columns.
(l) To find vectors in the null space, assign one of the free variables the value 1, and

set the rest to 0. Solve for the pivot variables to get a special solution.
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(m) The null space of A consists of the linear combinations of the n−r special solutions.

(9) The Reduced Row Echelon Form (§3.3)
(a) An m × n matrix can be put into reduced row echelon form (RREF) where each

pivot column has a single nonzero entry, and this entry is 1.
(b) To get the RREF R from the echelon form U , eliminate upwards to clear the

entries above the pivots, then divide each row by its pivot.
(c) The RREF of a matrix is unique.
(d) The RREF matrix R makes it easier to find the special solutions, because the

coefficients of the free columns of R appear in the pivot variables with opposite
sign.

(e) The special solutions can be collected into the columns of a null space matrix N .
It has size n× (n− r).

(10) The complete solution to Ax = b (§3.4)
(a) The rank of an m× n matrix is the number of pivots. The rank r satisfies r ≤ m

and r ≤ n.
(b) The RREF R has m− r zero rows.
(c) To decide whether or not Ax = b has any solutions, reduce the augmented matrix

[A b] to [R c]. There is a solution if and only if the last m − r entries of c are
zero (so the last m− r equations become 0 = 0).

(d) To find a particular solution xp, set all n−r free variables to zero and solve Rx = c
by back-substitution.

(e) The general solution is then x = xp + xn where xn ∈ N(A), i.e. xn is a linear
combination of the (n− r) special solutions.

(f) Special case: If r = n, then A has full column rank. There is exactly one solution
if b ∈ C(A) and no solution otherwise. (In particular, if there is any solution at
all, it is unique.)

(g) Special case: If r = m then A has full row rank. There is exactly one solution if
m = n, and infinitely many solutions if m < n. (In particular, there is at least
one solution for any b.)

(h) Special case: If r = m = n then A is a square invertible matrix. There is exactly
one solution for every b. In fact, the solution is x = A−1b.

(11) Linear Independence, Span, Basis, and Dimension (§3.5)
(a) Vectors x1, . . . ,xn are linearly independent if

c1x1 + . . . + cnxn 6= 0

except when c1 = c2 = · · · = cn = 0.
(b) The columns of a matrix A are linearly independent exactly when x = 0 is the

only solution to Ax = 0, i.e. N(A) = 0.
(c) The span of x1, . . . ,xn is the vector space consisting of all linear combinations of

these vectors.
(d) We say that x1, . . . ,xn span V if V is equal to the span of x1, . . . ,xn.
(e) A basis of V is a set of vectors that span V and are linearly independent.
(f) Every basis of a vector space has the same number of elements. This number is

the dimension of V , written dim V .
(g) If dim V = d, then any d linearly independent vectors form a basis of V .
(h) If dim V = d, then (d − 1) or fewer vectors cannot span V , and (d + 1) or more

vectors cannot be linearly independent.
(i) The columns of an n×n matrix A are a basis for Rn if and only if A is invertible.


