Math 520 Exam 1 Topic Outline

Sections 1–3 (Xiao/Dumas/Liaw) \cdot Spring 2008

Exam 1 will be held on Tuesday, Feb 26, 7-8pm in 117 MacMillan

What will be covered

The exam will cover material from the lectures up to and including Friday, February 22. This corresponds approximately to chapters 1 and 2, sections 3.1-3.4, and part of section 3.5 in Strang's book. There will be an emphasis on material *after* section 2.2.

Outline of topics

This outline is designed to help you plan your review for the first exam. It is not intended to cover every detail.

- (1) Foundation in vector arithmetic (\S 1.1 1.2)
 - (a) Addition, scalar multiplication, the dot product, linear combinations
- (2) Representing linear equations using matrices and vectors $(\S 2.1)$
 - (a) A system of linear equations becomes $A\mathbf{x} = \mathbf{b}$ in matrix/vector notation.
 - (b) Row Picture each equation determines a subset (e.g. a plane in \mathbb{R}^3 , a line in \mathbb{R}^2) of the space of potential solutions. Taking the intersection gives the actual solution set.
 - (c) Column Picture finding a solution x amounts to expressing the right hand side b as a linear combination of the columns of A.
 - (d) Possible solution sets: none at all, exactly one, or infinitely many. If \mathbf{x} and \mathbf{y} are solutions, so is $\frac{1}{2}(\mathbf{x} + \mathbf{y})$.
- (3) Solving Linear Systems $A\mathbf{x} = \mathbf{b}$ (§2.2 §2.3)
 - (a) Gaussian Elimination row operations put an invertible square matrix A in upper triangular form U, possibly after exchanging some rows.
 - (b) The right hand side \mathbf{b} is transformed into a vector \mathbf{c} by applying the same row operations.
 - (c) The *augmented matrix* $[A \mathbf{b}]$ is a convenient way to keep track of both the matrix and the right-hand side during elimination.
 - (d) The *pivots* appear on the diagonal of U.
 - (e) Back-substitution solves the triangular system $U\mathbf{x} = \mathbf{c}$ (and this is quite easy).
 - (f) Each row operation in the elimination process can be represented by an elimination matrix $E_{ij}(\ell)$. Its looks like the $n \times n$ identity matrix except for the (i, j) entry, which is $-\ell$.
 - (g) To determine the matrix representing a row operation (subtraction or row exchange), apply the same operation to the identity matrix.
- (4) Matrix Algebra (\S 2.4-2.5)
 - (a) If A is $m \times n$ and B is $n \times p$ then the product AB exists and is an $m \times p$ matrix.
 - (b) Each entry of AB is the dot product of a row from A and a column from B.
 - (c) The summation formula

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- (d) Matrix multiplication is associative ((AB)C = A(BC)) but it is not commutative (usually $AB \neq BA$).
- (e) The square *identity matrix* I has 1 on the diagonal and 0 elsewhere.
- (f) The *inverse* of a square matrix A is another matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I$$

- (g) The inverse of a product: $(AB)^{-1} = B^{-1}A^{-1}$
- (h) The transpose operation: if A is $m \times n$, then A^T is $n \times m$.

$$(A^T)_{ij} = A_{ji}$$

- (i) The transpose of a product: $(AB)^T = B^T A^T$
- (j) The inverse and transpose can be interchanged: $(A^T)^{-1} = (A^{-1})^T$
- (k) A permutation matrix P has a exactly one 1 in each row and each column; all other entries are zero.
- (1) Permutation matrices satisfy $P^T = P^{-1}$.
- (5) Finding the Inverse $(\S 2.5)$
 - (a) A square matrix may or may not have an inverse.
 - (b) The following are equivalent for a $n \times n$ (square) matrix:
 - (i) A has an inverse
 - (ii) A has n pivots (which are nonzero)
 - (iii) $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b}
 - (iv) $A\mathbf{x} = \mathbf{0}$ only when $\mathbf{x} = \mathbf{0}$
 - (c) The definition of the inverse $AA^{-1} = I$ is a system of linear equations for the entries of A^{-1} .
 - (d) Gauss-Jordan elimination solves these equations simultaneously; it transforms the augmented matrix $[A \ I]$ into $[I \ A^{-1}]$ using elimination (downward and upward) and dividing rows by pivots.
- (6) Elimination as Factorization $(\S$ 2.6-2.7)
 - (a) Gaussian elimination without row exchanges allows one to express an invertible matrix A as a product of a lower triangular matrix L and an upper triangular matrix U:

$$A = LU$$

- (b) The matrix U is the final result of Gaussian elimination, while L is a table of the multipliers used during elimination.
- (c) In the LU decomposition, L has 1 on the diagonal, while U has pivots on the diagonal.
- (d) The closely related LDU decomposition separates the pivots from the upper triangular matrix U. The diagonal matrix D contains the pivots, while the new upper triangular matrix U' is obtained from U by dividing each row by its pivot.

$$A = LDU'$$

- (e) In the LDU decomposition, both L and U have 1s on the diagonal.
- (f) The *LU* decomposition gives a new way to solve $A\mathbf{x} = \mathbf{b}$: first solve $L\mathbf{c} = \mathbf{b}$, then solve $U\mathbf{x} = \mathbf{c}$. Both are triangular systems so this is easy, using substitution.
- (g) If row exchanges are necessary, the corresponding statement is that PA has an LU decomposition for some permutation matrix P:

$$PA = LU$$

- (7) Vector Spaces and Subspaces $(\S3.1)$
 - (a) A vector space is a set V together with two operations, vector addition and scalar multiplication, satisfying the rules on page 118 of Strang.
 - (b) Examples of vector spaces: \mathbb{R}^n , $\mathbf{M}_{2\times 2}$, \mathbf{F} , \mathbf{Z}
 - (c) A *subspace* is a subset of a vector space that is *closed* under vector addition and scalar multiplication.
 - (d) A subset $W \subset V$ is a subspace if and only if both of these conditions hold:
 - (i) For all $\mathbf{x}, \mathbf{y} \in W$, the sum $(\mathbf{x} + \mathbf{y})$ is also in W
 - (ii) For all $\mathbf{x} \in W$ and $c \in \mathbb{R}$, the product $c\mathbf{x}$ is in W
 - (e) All subspaces contain the zero vector **0**.
 - (f) If a subspace contains \mathbf{x} , then it contains the entire line of multiples of \mathbf{x} , i.e. $\{c\mathbf{x} \mid c \in \mathbb{R}\}.$
 - (g) If a subspace contains a certain set of vectors, then it also contains any linear combination of those vectors.
 - (h) The zero vector by itself is a subspace of any vector space.
 - (i) Subspaces of \mathbb{R}^2 :
 - (i) The zero vector $\mathbf{0}$
 - (ii) A line containing **0**
 - (iii) The entire plane \mathbb{R}^2
 - (j) Subspaces of \mathbb{R}^3 :
 - (i) The zero vector **0**
 - (ii) A line containing $\mathbf{0}$
 - (iii) A plane containing **0**
 - (iv) The entire space \mathbb{R}^3
- (8) Column Space and Null Space $(\S\S3.1-3.2)$
 - (a) The column space C(A) of an $m \times n$ matrix A is the subspace of \mathbb{R}^m consisting of all linear combinations of the columns of A. (There are n columns, each has m entries.)
 - (b) A system of linear equations $A\mathbf{x} = \mathbf{b}$ has a solution if and only if $\mathbf{b} \in C(A)$.
 - (c) The null space N(A) of an $m \times n$ matrix A is the set of all vectors **x** such that $A\mathbf{x} = \mathbf{0}$. It is a subspace of \mathbb{R}^n .
 - (d) N(A) is a subspace because A is linear, i.e.
 - (i) $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y}$
 - (ii) $A(c\mathbf{x}) = c(A\mathbf{x})$
 - (e) For a square invertible matrix, N(A) = 0, i.e. the only solution to $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.
 - (f) If $\mathbf{x}_{particular}$ is a solution to $A\mathbf{x} = \mathbf{b}$, and $\mathbf{x}_{null} \in N(A)$, then $(\mathbf{x}_{particular} + \mathbf{x}_{null})$ is another solution of $A\mathbf{x} = \mathbf{b}$.
 - (g) Finding the null space means solving $A\mathbf{x} = \mathbf{0}$; to do this, put A in echelon form, obtaining a matrix U.
 - (h) The number of pivots obtained by putting A in echelon form is the rank of A (which we call r).
 - (i) Solving $U\mathbf{x} = \mathbf{0}$ is equivalent to solving $A\mathbf{x} = \mathbf{0}$.
 - (j) The echelon matrix U has r pivot columns and (n r) free columns. There are corresponding pivot variables and free variables.
 - (k) The free columns of U are linear combinations of the previous columns. The pivot columns are *not* linear combinations of previous columns.
 - (1) To find vectors in the null space, assign one of the free variables the value 1, and set the rest to 0. Solve for the pivot variables to get a *special solution*.

- (m) The null space of A consists of the linear combinations of the n-r special solutions.
- (9) The Reduced Row Echelon Form $(\S 3.3)$
 - (a) An $m \times n$ matrix can be put into reduced row echelon form (RREF) where each pivot column has a single nonzero entry, and this entry is 1.
 - (b) To get the RREF R from the echelon form U, eliminate upwards to clear the entries above the pivots, then divide each row by its pivot.
 - (c) The RREF of a matrix is unique.
 - (d) The RREF matrix R makes it easier to find the special solutions, because the coefficients of the free columns of R appear in the pivot variables with opposite sign.
 - (e) The special solutions can be collected into the columns of a null space matrix N. It has size $n \times (n r)$.
- (10) The complete solution to $A\mathbf{x} = \mathbf{b}$ (§3.4)
 - (a) The rank of an $m \times n$ matrix is the number of pivots. The rank r satisfies $r \leq m$ and $r \leq n$.
 - (b) The RREF R has m r zero rows.
 - (c) To decide whether or not $A\mathbf{x} = \mathbf{b}$ has any solutions, reduce the augmented matrix $[A \mathbf{b}]$ to $[R \mathbf{c}]$. There is a solution if and only if the last m r entries of \mathbf{c} are zero (so the last m r equations become 0 = 0).
 - (d) To find a *particular solution* \mathbf{x}_p , set all n-r free variables to zero and solve $R\mathbf{x} = \mathbf{c}$ by back-substitution.
 - (e) The general solution is then $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_n$ where $\mathbf{x}_n \in N(A)$, i.e. \mathbf{x}_n is a linear combination of the (n-r) special solutions.
 - (f) Special case: If r = n, then A has full column rank. There is exactly one solution if $\mathbf{b} \in C(A)$ and no solution otherwise. (In particular, if there is any solution at all, it is unique.)
 - (g) Special case: If r = m then A has full row rank. There is exactly one solution if m = n, and infinitely many solutions if m < n. (In particular, there is at least one solution for any **b**.)
 - (h) Special case: If r = m = n then A is a square invertible matrix. There is exactly one solution for every **b**. In fact, the solution is $\mathbf{x} = A^{-1}\mathbf{b}$.
- (11) Linear Independence, Span, Basis, and Dimension $(\S3.5)$
 - (a) Vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are linearly independent if

$$c_1\mathbf{x}_1 + \ldots + c_n\mathbf{x}_n \neq \mathbf{0}$$

except when $c_1 = c_2 = \cdots = c_n = 0$.

- (b) The columns of a matrix A are linearly independent exactly when $\mathbf{x} = \mathbf{0}$ is the only solution to $A\mathbf{x} = 0$, i.e. $N(A) = \mathbf{0}$.
- (c) The span of $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is the vector space consisting of all linear combinations of these vectors.
- (d) We say that $\mathbf{x}_1, \ldots, \mathbf{x}_n$ span V if V is equal to the span of $\mathbf{x}_1, \ldots, \mathbf{x}_n$.
- (e) A basis of V is a set of vectors that span V and are linearly independent.
- (f) Every basis of a vector space has the same number of elements. This number is the *dimension* of V, written dim V.
- (g) If $\dim V = d$, then any d linearly independent vectors form a basis of V.
- (h) If dim V = d, then (d 1) or fewer vectors cannot span V, and (d + 1) or more vectors cannot be linearly independent.
- (i) The columns of an $n \times n$ matrix A are a basis for \mathbb{R}^n if and only if A is invertible.