Math 18 Final Exam Spring 2007

David Dumas

Read these instructions carefully.

- Write your name, section number, and "Math 18 Final Exam" on the front of a blue examination book. (Noon is section 1, 2pm is section 2.)
- Read each problem carefully before you attempt to solve it.
- Write your solutions to the problems in the examination book. Show your work!
- Clearly indicate where your solution to each problem begins and ends.
- Make sure your solutions are clear, concise, and legible.

Do not turn the page until you are told to do so!

1. Find the line containing the origin in \mathbb{R}^3 that perpendicularly intersects the line

$$\mathbf{l}(t) = \langle -3, 4, 6 \rangle + t \langle 2, -1, -3 \rangle.$$

- 2. Let $f(x, y) = x^2 y + e^{x+2y}$.
 - (a) Compute the gradient $\nabla f(x, y)$.
 - (b) Compute the directional derivative of f(x, y) at (0, 0) in the direction of $\mathbf{v} = \langle 1, 1 \rangle$.
 - (c) Find a unit vector **u** such that the directional derivative $D_{\mathbf{u}}f(0,0)$ is zero.
- 3. Let $g(x, y) = x^2 + 2y^2$.
 - (a) Find and classify the critical points of g(x, y).
 - (b) Find the absolute maximum and minimum values of g(x, y) on the disk $x^2 + y^2 \le 1$.
- 4. Let $F(x, y) = x^2 y + y^2$.
 - (a) Compute $\iint_R F(x, y) \, dA$ where R is the square $[0, 1] \times [0, 1]$. (b) Compute $\iint_R F(x, y) \, dA$ where D is the unit disk $x^2 + y^2 \le 1$.
- 5. Let *E* be the set of points in \mathbb{R}^3 that lie above the cone $z = \sqrt{x^2 + y^2}$, outside the sphere $x^2 + y^2 + z^2 = 1$, and inside the sphere $x^2 + y^2 + z^2 = 4$.
 - (a) Sketch the region E.
 - (b) Compute the volume of E.
 - (c) Find the centroid of E.
- 6. For each of the following vector fields, either find a potential function or prove that the vector field is not conservative.
 - (a) $\mathbf{F}(x,y) = e^{y^2}\mathbf{i} + 2xye^{y^2}\mathbf{j}$
 - (b) $\mathbf{F}(x,y) = \langle 2xy y^3, x^2 2xy^2 \rangle$
 - (c) $\mathbf{F}(x, y, z) = \langle y e^{xy} + yz, xz, xy \rangle$
- 7. Let $\mathbf{F}(x, y, z) = \langle -\cos(z), \sin(z), 0 \rangle$
 - (a) Show that $\nabla \times \mathbf{F} = \mathbf{F}$ (that is, \mathbf{F} is equal to its own curl).
 - (b) Let S be the unit sphere centered at (0, 0, 0) in \mathbb{R}^3 with the outward orientation. Compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$.
- 8. Let T be the part of the plane x + y + z = 1 that lies in the first octant of \mathbb{R}^3 . Orient T so that the normal has positive z component. Let $\mathbf{F}(x, y, z) = \langle x^3 y^2 z, -x^2 y^3 z, 6z^2 \rangle$.
 - (a) Compute $\iint_T \mathbf{F} \cdot d\mathbf{S}$. (b) Compute $\oint_{\partial T} \mathbf{F} \cdot d\mathbf{r}$.