Math 104 Homework 9 David Dumas Due Thursday, April 20, 2006

(1) A regular 4-gon.

- (a) In the Minkowski model, find unit timelike vectors representing the vertices of a regular (equilateral, equiangular) quadrilateral Q centered at O = (0, 0, 1) with all internal angles $\pi/4$. (Hint: for some value of t, the vectors $(\pm 1, 0, t)$, $(0, \pm 1, t)$ are spacelike and represent the lines containing the four edges of Q. Use the angle condition to find the right value of t, then find the vertices.)
- (b) Compute the side length of Q.
- (c) Compute the radius of the inscribed circle of Q.
- (d) In the Poincaré model, Q is represented by four circular arcs. Find the centers and radii of the circles. (Hint: The pole of a Klein model line is the center of the corresponding Poincaré circle.)
- (e) By decomposing Q into triangles, compute its area.

(2) Beachfront property.

- (a) Let D be an open disk of radius R in the Euclidean plane. What fraction of the area of D consists of points within distance 1 of the boundary circle? (That is, let D_0 denote the set of points in D whose distance from the center O is at least (R-1). Compute $\operatorname{Area}(D_0)/\operatorname{Area}(D)$.)
- (b) Let $b_E(R)$ denote the ratio from (a). Compute $\lim_{R\to\infty} b_E(R)$.
- (c) Now let D be an open disk of radius R in the hyperbolic plane. What fraction of the area of D consists of points within distance 1 of the boundary circle?
- (d) Let $b_H(R)$ denote the ratio from (c). Compute $\lim_{R\to\infty} b_H(R)$.

Note: The result of (d) is an example of the following principle: "On an island in the hyperbolic plane, most property is beachfront property."

(3) Horocycles.

- (a) Let A and B be distinct points in \mathbb{H}^2 . Show that there are exactly two horocycles containing both A and B, and that these are related by reflection in the line \overline{AB} . (Hint: First use reflections to reduce to the case where A and B lie on the x axis in Δ_P with midpoint O.)
- (b) Let h be a horocycle containing A and B, and let h denote the arc of h "between" A and B (as in Figure 1).
 Let λ(d) denote the length of h, which depends only on the distance d = d(A, B)

(you do not need to prove this). Compute $\lambda(d)$.

(c) Based on your formula from part (b), is following a horocycle an efficient way to get from A to B? Justify your answer by computing $\lim_{d\to\infty} \frac{\lambda(d)}{d}$.

Continued on next page...

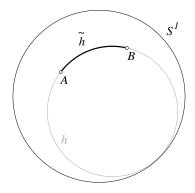


FIGURE 1. A path \tilde{h} joining A and B along a horocycle.

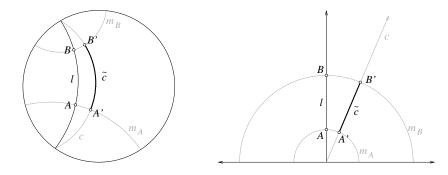


FIGURE 2. A hypercycle path between A' and B' in the Poincaré disk (left) and upper half-plane (right) models.

(4) **Hypercycles.** Let A and B be distinct points on a line l in \mathbb{H}^2 . Let m_A and m_B denote the perpendiculars to l at A and B, respectively. Choose one side of l, and let A' and B' denote the points on m_A and m_B on the chosen side of l whose distances from A and B are h, respectively.

Then A' and B' are joined by an arc \tilde{c} of an *h*-equidistant hypercycle c of l (as in Figure 2).

- (a) Compute the length $\mu(d, h)$ of \tilde{c} , which depends only on d = d(A, B) and h. (Hint: Work in the upper half plane model, let A = (0, 1) and $B = (0, e^d)$. Use the distance-angle formula from homework 8.)
- (b) The calculation from (a) can be interpreted as follows: Suppose two points P and Q maintain a constant distance h while one of them, say P, moves distance d along a geodesic perpendicular to their separation. Then the ratio of the distance traveled by P to that traveled by Q is $\frac{\mu(d,h)}{d}$. Describe the limiting behavior of this ratio as a function of d and h (computing,

Describe the limiting behavior of this ratio as a function of d and h (computing, at the very least, $\lim_{h\to\infty} \frac{\mu(d,h)}{d}$).

(c) Compute the corresponding ratio $\frac{\mu(d,h)}{d}$ in Euclidean geometry. Comment on the difference between the hyperbolic and Euclidean situations.